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In this document we present some formal analysis which is referenced in the published version

of the paper.

Partially Observed Preferences

Suppose that when two players are matched, their preferences are observed with probability

q ∈ (0, 1), and with probability 1−q the actors only know the distribution of preferences. Since the

game now includes incomplete information, our equilibrium requirement is now that the players

use Perfect Bayesian Equilibrium strategies in the bargaining game given their preferences and

consistent beliefs. (In this case, consistency only requires that proposers have a correct belief

about the distribution of types)

We assume in this section that all actors’ preferences are equal to the objective payoffs when

in the proposer role, and in the responder role the conflict fitness is v− k+βr. This is primarily to

keep the uncertainty one-sided, and greatly reduces the number of cases to consider when solving

for the equilibrium offer made and hence the optimal type given a preference distribution. Further,

as shown in the online supplement, when the players preferences are allowed to vary based on role,
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there is no fitness benefit to having a β > 0 when in the proposer role, and so in any SRNE the

average toughness in the proposer role is zero.

We also assume uniform noise, so if the type that gets the highest fitness is βrmax, then the

toughness parameters in the next generation are uniformly distributed on [βrmax − εr, βrmax + εr].

When the types are observed, by standard logic the proposer (who again has preferences equal

to her objective payoff, and hence gets v − k for fighting) offers v − k + βr, which is accepted if

βr ≤ 2k, and makes an offer which is rejected otherwise.

When the type is unobserved with a population distributed on [βrm− εr, βrm + εr], then proposer

utility for making offer x is:

up(x; βrm) =


v − k x < v − k + βrm − εr

x−(v−k+βr
m−εr)

2εr
(2v − x) + v−k+βr

m+εr−x
2εr

(v − k) x ∈ (v − k + βrm − εr, v − k + βrm + εr)

2v − x x ≥ v − k + βrm + εr

The middle segment (with respect to x) is a quadratic maximized at v + βr
m−εr
2

. If this maximum

lies below v − k + βrm − εr, then the proposer makes an offer which is always rejected. If the

maximum of the quadratic is above v − k + βrm + εr, then the proposer makes this offer, which

buys off all types. If the quadratic is maximized on the middle interval, the proposer makes that

maximizing offer. So:

x∗u =


v − k + βrm + εr βrm < 2k − 3εr

v + βr
m−εr
2

βrm ∈ [2k − 3εr, 2k + εr]

v − k + βrm − εr βrm > 2k + εr

If βrm < 2k − 3εr, then the proposer buys off all types when the type is unobserved. This

inequality also implies that the highest type is below 2k − 2εr, so a deal is also always reached
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when the type is observed. Since a deal is always reached the highest type always gets the highest

fitness, and hence the distribution is not stable. Conversely, if βrm > 2k + εr, then all types fight

regardless of whether the type is observed, which also violates the stability condition. So, in

any stable equilibrium βrm ∈ [2k − 3εr, 2k + εr] and an interior offer is made when the type is

unobserved.

Next, we compute the fitness for a responder with toughness βrj when the average toughness is

βrm (within the range of types in the distribution). When the type is observed, the resulting fitness

is v−k+βrj for βrj ≤ 2k and v−k otherwise. When the type is unobserved, the responder accepts

the offer made if and only if:

v +
βrm − εr

2
≥ v − k + βrj =⇒ βrj ≤ k +

βrm − εr

2

So, the expected fitness for the responder is:

Πr(βrj ; β
r
m) =


q(v − k + βrj ) + (1− q)

(
v + βr

m−εr
2

)
βrj ≤ k + βr

m−εr
2

q(v − k + βrj ) + (1− q)(v − k) βrj ∈ [k + βr
m−εr
2

, 2k]

v − k βrj > 2k

which is a piecewise linear function, increasing on the first two segments and flat on the third, and

with two (downward) discontinuities. In words, the type attaining the highest fitness is either the

toughest one that never fights (regardless of whether the type is observed) or the toughest type who

does not fight when the type is observed (but does reject the offer when her type is unobserved).

The first peak is strictly higher if and only of:

q

(
v − k + k +

βrm − εr

2

)
+ (1− q)

(
v +

βrm − εr

2

)
> q(v − k + 2k) + (1− q)(v − k)

βrm > εr + 2k(2q − 1)
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So, for the range of βrm where βmax is well-defined, the next generation average toughness as a

function of the current generation average is:

βmax(β
r
m) =


2k βrm < 2k(2q − 1) + εr

k + βr
m−εr
2

βrm > 2k(2q − 1) + εr.

This function is flat in βrm on the first segment, then there is a downward discontinuity after which

it is linearly increasing in βrm. So, there may be a fixed point on the first segment, a fixed point on

the second segment, or no fixed point (as shown below, there is never more than one intersection).

There is a fixed point where βmax(β
∗) = β∗ (and hence an equilibrium) at β∗ = 2k if and only if:

2k < 2k(2q − 1) + εr =⇒ q > 1− εr

4k

And there is a fixed point where

β∗ = k +
β∗ − εr

2
=⇒ β∗ = 2k − εr

if and only if

2k − εr > 2k(2q − 1) + εr =⇒ q < 1− εr

2k

So, unless q ∈ [1− εr

2k
, 1− εr

4k
], there is a unique β∗ such that βmax(β

∗) = β∗ and hence a unique

SRNE.

If q lies within this range, then there is no stable population toughness. However, it is relatively

straightforward to characterize a stable “cycle” of population toughness. To show this, we first

extend our equilibrium definition:

Definition A strategy profile σ∗ = (σ∗1, σ
∗
2), finite sequence of types (β∗(1), ..., β∗(l)) such that
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β∗(1) > β∗(t) for t = 2, ...l, and noise distribution G(ν) comprise a Cyclical Single Reproducer

Noisy Equilibrium (CSRNE) if:

(1) (σ∗1(β1, β2), σ
∗
2(β1, β2)) are PBE strategies of the bargaining game for all (β1, β2) ∈ R2.

(2) β∗(t+ 1) = βmax(β
∗(t)) for i = 1, ..., l − 1 and β∗(1) = βmax(β

∗(l)) where

βmax(β
∗) = arg max

βj∈Supp(G(ν−β∗))
Π(βj;G(ν − β∗), σ∗)

Note that a SRNE is a special case of a CSRNE where l = 1. The restriction that β∗(1) is the

highest type is to pin down a unique “starting place” for the cycle; without this requirement the

existence of one stable cycle of length l would entail l − 1 other cycles with the same set of types

but a different order. We can now state our main results for this extension:

Proposition 1. In the model with incomplete informtion and uniform noise:

(i) there exists a unique CSRNE for all but a countably infinite number of values of q (and no

CSRNE for these values).

In the CSRNE:

(ii) The average toughness across the sequence of types is increasing in q,

(iii) The probability of conflict is continuous and decreasing in q almost everywhere, but:

(iv) the probability of conflict is non-monotone and strictly higher for any q > 1 − εr

4k
than any

q < 1− εr

2k

Proof We first construct an algorithm which generates a CSRNE with these properties here, and

then demonstrate uniqueness.

For q < 1− εr

2k
and q > 1− εr

4k
we have already demonstrated the existence of a CSRNE with

l = 1. So, suppose q ∈ (1− εr

2k
, 1− εr

4k
).

Let β∗(1) = 2k, and let the second generation average toughness be the best response to this

5



toughness level:

β∗(2) = βmax(2k) = 2k − εr/2

For the third generation, if:

2k − εr/2 < εr + 2k(2q − 1) =⇒ q > 1− 3εr

8k
∈ (1− εr

2k
, 1− εr

4k
)

then βmax(2k − εr/2) = 2k, and hence (β∗(1), β∗(2)) = (2k, 2k − εr/2) constitute the preference

cycle for a CSRNE for this range of q.

If q = 1− 3εr

8
, then then βmax is not well defined, so our algorithm does not identify a CSRNE.

If q < 1− 3εr

8
, then let β∗(3) = βmax(2k − εr/2) = k + 2k−εr/2−εr

2
= 2k − 3εr/4.

Generally, let β∗(t) = 2k − (1− 21−t)εr. If the current generation is centered at β∗(t), then

βmax(β
∗(t)) =


2k q > 1− εr 2+21−t

4

β∗(t+ 1) q < 1− εr 2+21−t

4
,

and is undefined if q = 1− εr 2+21−t

4k
.

Rearranging the threshold determining whether the next generation resets to 2k gives:

21−t >
2(εr − 2k(1− q))

εr

Since 21−t starts at 1 for t = 1 and converges to 0 as t → ∞, there will be a smallest integer l

where the inequality holds if and only if the right-hand side of this equation is between 0 and 1,

which is true exactly when q ∈ (1− εr

2k
, 1− εr

4k
).
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In particular so the cycle “resets” to 2k at the smallest integer where the inequality is met, or:

l = 1− blog2

(
2(εr − 2k(1− q))

εr

)
c (1)

So, as long as:

q 6∈ {q : 21−t =
2(εr − 2k(1− q))

εr
, t = 1, 2, ...},

then β∗(1), ..., β∗(l) for t = 1, ...l constitutes the preferences for a CSRNE. If q is in this set, then

the sequence starting at 2k will eventually lead to a generation where βmax is not well-defined. This

set is countable, completing part i.

For part ii, the average toughness in a cycle of length l is:

l−1
l∑

t=1

(2k − (1− 21−t)εr) = 2k − l−1
l∑

t=1

(1− 21−t)εr

which is strictly greater than 2k− εr, less than 2k, and decreasing in l. Over the range (1− εr

2k
, 1−

εr

4k
), l is decreasing in q. So average toughness is increasing in q.

For parts iii-iv, first consider the probability of conflict for an arbitrary βrm. When the type is

observed, then conflict never occurs if βrm ≤ 2k− εr, always occurs if βrm ≥ 2k + εr, and happens

when βr > 2k for the intermediate range:

pc(β
r
m; type observed) =


0 βrm < 2k − εr

βr
m+εr−2k

2εr
βr∈[2k − εr, 2k + εr]

1 βrm > 2k + εr

When the type is unobserved, the equilibrium offer in the relevant range is v + βr
m−εr
2

which is
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accepted if βrj ≤ k + βr
m−εr
2

, which occurs with probability:

βrm + εr − (k + βr
m−εr
2

)

2εr
=
βm + 3εr − 2k

4εr

Combining, the average probability of conflict is:

pc(β
r
m) =



0 βrm < 2k − 3εr

(1− q)βm+3εr−2k
4εr

βrm ∈ [2k − 3εr, 2k − εr)

q β
r
m+εr−2k

2εr
+ (1− q)βm+3εr−2k

4εr
βrm ∈ [2k − εr, 2k + εr)

1 βrm ≥ 2k + εr

So, when q < 1− εr

2k
and β∗ = 2k − εr, the probability of conflict is:

(1− q)2k − εr + 3εr − 2k

4εr
= (1− q)/2

When q > 1− εr

4k
and β∗ = 2k, the probability of conflict is:

q
2k + εr − 2k

2εr
+ (1− q)2k + 3εr − 2k

4εr
= 3/4− q/4

Finally, in the CSNRE for the intermediate range, βrm is always between 2k−εr and 2k, and the

probability of conflict is linear on this segment, so we can write the average probability of conflict

across generations as:

q
E[βrm] + εr − 2k

2εr
+ (1− q)E[βrm] + 3εr − 2k

4εr
(2)

where E[βrm] is the average of the center of the distribution over the cycle derived in part ii.
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Summarizing, the (average) probability of conflict as a function of q is:

pc(β
∗) =


(1− q)/2 q < 1− εr

2k

(3−q)εr+(1−q)l−1
∑l

t=1(1−21−t)

4εr
q ∈ (1− εr

2k
1− εr

4k
)

3/4− q/4 q > 1− εr

4k

where l is given by equation ??.

This is locally decreasing on every segment (part iii). However, it is strictly less than 1/2 on

the first segment and strictly greater than 1/2 on the last segment, proving part iv.

To prove uniqueness, recall a CSRNE requires that iteratively applying the best response func-

tion gives βmax(β
∗(t)) = β∗(t+ 1) for t = 1, ..., l − 1 and βmax(β

∗(l)) = β∗(1). So, to see if there

is a cycle starting at β∗(1), we check if iteratively applying the best response function “leads back”

to β∗(1) for some β∗(t). There are three relevant cases:

Case 1: q > 1 − εr

4k
. In this range, the best response function has a unique fixed point at 2k.

The idea of the proof is that for any β∗(t), either βmax(β
∗(t)) = 2k or βmax(β

∗(t)) < β∗(t). So,

iteratively applying the best response function either leads to a perpetually decreasing sequence

(which can not be a cycle) or it must eventually hit 2k at which point it becomes “stuck” (i.e.,

βmax(β
∗(t′)) = 2k for all t′ > t). By the best response function, βmax(β

∗(t)) = 2k if β∗(t) <

2k(2q−1)+εr, so what remains to be shown is that if β∗(t) > 2k(2q−1)+εr, then βmax(β
∗(t+1)) <

β∗(t). Over the relevant range, this is equivalent to:

β∗(t) > k +
β∗(t)− εr

2
=⇒ β∗(t) > 2k − εr (3)

And since β∗(t) > 2k(2q − 1) + εr and q > 1− εr

4k
, we know that:

β∗(t) > 2k(2(1− εr

4k
)− 1) + εr = 2k − εr + εr = 2k
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and so equation 1 holds too. So, the only CSRNE is of length one with β∗(1) = 2k.

Case 2: q < 1 − εr

2k
. In this range, the best resposne function has a unique fixed point at

2k − εr. If β∗(1) < 2k − εr, then βmax(β
∗(1)) > β∗(1), as either βmax(β

∗) = 2k or the converse

of equation 1 holds. This violates the condition that β∗(1) is the highest part of the sequence.

If β∗(1) > 2k − εr, then βmax(β
∗(1)) = k + β∗(1)−εr

2
∈ (2k − εr, β∗(1)). More generally, if

β∗(t) > 2k − εr, then βmax(β
∗(t)) ∈ (2k − εr, β∗(t)). So, for any sequence that starts above

2k − εr, subsequent generations have decreasing toughness which approaches but never reaches

2k−εr, contradicting the length of the cycle being finite. So, the only CSNRE has β∗(1) = 2k−εr,

which is the fixed point of βmax, and hence the cycle has length one.

Case 3: q ∈ (1 − εr

2k
, 1 − εr

4k
). For the intermediate range, there is no fixed point to the best

response function. If β∗(1) ≤ 2k(2q−1)+εr, then βmax(β
∗(1)) = 2k, which is above β∗(1) for this

range. If not then the largest possible value of β∗(1) where βmax is well defined is β∗(1) = 2k+ εr.

Then:

βmax(β
∗(1)) = k +

βrm − εr

2
≤ 2k

Further, as characterized above, the toughness level will continue to decrease in every generation

until βmax(β
∗(t)) = 2k. If β∗(1) < 2k, then this violates β∗(1) being the highest toughness level.

If β∗(1) > 2k, then by the same argument as in the first case repeatedly applying the best response

function either leads to decreasing values of β∗(t) or jumping back to 2k, in which case the cycle

identified in the main text starts, and hence β∗(t) > 2k is never reached again. So, the cycle

identified in the main text is unique in this range as well.

Comment on Values of q with no CSRNE

The values of q where the CSRNE is not defined reach problems because the best response

function has two peaks, and we avoid defining what should happen in the next generation in these
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cases. However, it is easy to see that if we modify our definition of a CSRNE to “select” either the

first or second peak, there is a unique stable cycle. In particular, if we define:

βmax(β
∗) = min

βj
{ arg max
βj∈Supp(G(ν−β∗))

Π(βj;G(ν − β∗), σ∗)}

then in the uniform case

βmax(β
∗(t)) =


2k β∗(t) < 2k(2q − 1) + εr

k + β∗(t)−εr
2

β∗(t) ≥ 2k(2q − 1) + εr.

where now the second case applies at the boundary case. The same algorithm now defines a

sequence where in the last element of the cycle β∗(l) = 2k(2q − 1) + εr.

Static Solution Concept

The models in the paper use an evolutionary process where each generation’s preferences which

allows for noise in the evolutionary process. A more “standard” evolutionary concept uses a more

static concept of preferences being stable (as in, e.g., Dekel, Ely and Yilankaya, 2007; Huck and

Oechssler, 1999). The main result using the solution concept is indeterminate: there is a wide

range of equilibria where any probability of conflict is possible. So, one way to think about the

noisy solution concept used in the paper is as an equilibrium selection mechanism to break the

indeterminacy found here (and allow for comparative static predictions).

Formal Definition of the Static Solution Concept

As in the paper, let π(βj; β−j, σ) be the expected fitness for a player of toughness βj when

matched with a partner with toughness β−j and they use strategies σ = (σ1, σ2) when in the

subscripted role in the bargaining game.
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Let the β’s follow a distribution F . Then the expected fitness for a player with toughness level

β is:

Π(β;F, σ) =

∫
π(β; β−j, σ)dF (β−j)

Our static equilibrium concept is:

Definition A strategy profile σ∗ = (σ∗1, σ
∗
2) and preference distribution F comprise a Stable Pref-

erences Subgame Perfect Equilibrium (SP-SPE) if:

(1) (σ∗1(β1, β2), σ
∗
2(β1, β2)) is a SPNE of the bargaining game for all (β1, β2) ∈ R2.

(2) supp(F ) ∈ arg maxβ Π(β;F, σ∗)

The first part states that the outcome of the bargaining game is a SPNE given the preferences

of the players. The second part states that all types in the support of the distribution (i.e., with

positive probability or density) get the highest possible fitness when playing strategies meeting the

first condition.

We first show that in an SP-SPE the preferences always make the actors more willing to fight

than their preferences dictate (this is always true on average for the model in the paper, but given

the noise in the evolutionary process it is possible to have some actors with βj < 0):

Proposition 2. In any SP-SPE, Pr(βj ≤ 0) = 0

Proof The intuition behind the result is to divide the pool of types into those with a toughness

less than or equal to 2k and those with a toughness strictly greater than 2k. There is no incentive

to have a toughness less than 0 against the first group because one can always become tougher

and get better deals without fighting. There is also no incentive to have toughness less than zero

against the latter group because any deal than can be struck with them is worse than fighting. So,

it is always strictly better to be type β′ = 0 than any β′ < 0.
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Formally, write the fitness for being type β′ given type distribution F as:

Π(β′, F ) =

∫ 2k

−∞

(
1β′+β−j≤2k

(
v +

β′ − β−j
2

)
+ 1β′+β−j>2k(v − k)

)
dF (β−j)

+

∫ ∞
2k

(
1β′+β−j≤2k

(
v +

β′ − β−j
2

)
+ 1β′+β−j>2k(v − k)

)
dF (β−j).

I.e., the first integral captures the fitness from being matched with a β−j ≤ 2k type and the second

being matched with a β−j > 2k type. There are two cases to consider:

i. If F (2k) = 1 (i.e., all types are less than 2k), then the second integral drops out and β′ +

β−j ≤ 2k for β′ < 0, hence the fitness is strictly increasing for β′ < 0.

ii. If F (2k) < 1, then Pr(β−j > 2k) > 0. For the range β′ < 0, β′ + β−j ≤ 2k for all

β−j corresponding to the first integral, so the fitness is strictly increasing in β′ in this range (i.e.,

one gets better deals without fighting this group by getting tougher). If β′ < 0 and β−j > 2k,

then v +
β′−β−j

2
< v − k, so increasing β′ can only lead to more fighting among this group, but

fighting gives a higher fitness than striking a deal, so the fitness when matched against a β−j > 2k

is weakly increasing for β′ < 0.

So, in either case the fitness is strictly increasing for β′ < 0 violating the condition for a

SP-SPE which places positive probability on βj < 0. .

Before focusing on more interesting cases, we first note that there is a large class of equilibria

where conflict always happens:

Proposition 3. There is a SP-SPE with preferences given by any F such that Pr(βj > 2k) = 1

Proof As shown above, when faced with a type with βj > 2k, the fitness from striking a deal is

strictly less than v − k. So if all of the population is sufficiently tough, the highest possible fitness

is from conflict, and all types fight in all interactions.

Recall the equilibria analogous to these in the noisy evolution model are ruled out by assump-

tion that the maximizing type must be a global maximizer. So, hereafter we focus on equilibria
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were Pr(βj > 2k) < 1

Characterization of Two-Type Equilibrium

We next show that even when restricting to equilibria with only two types, there is always a

continuum of SP-SPE where any probability of conflict is possible.

Consider a two type distribution with toughness levels βl and βh > βl, where the probability

of being a βh type is ph. By proposition 1, 0 < βl. Proposition ?? implies that there is always a

SP-SPE where conflict always occurs if 2k < βl, so we restrict attention to the case where βl < 2k.

The expected fitness to being type β given σ∗ is:

Π(β; βl, βh, ph, σ
∗) ≡ phπ(β; βh, σ

∗) + (1− ph)π(β; βl, σ
∗)

For the triple (βl, βh, ph) to be a part of a SP-SPE, it must be the case that actors with toughness

parameters βl and βh get same fitness as each other, and that no “invader” with a different toughness

parameter would get a higher fitness. So, the equilibrium condition can be written:

Π(βl; βl, βh, ph, σ
∗) = Π(βh; βl, βh, ph, σ

∗) ≥ Π(β′; βl, βh, ph, σ
∗) (4)

for any β′ ∈ R.

Given the equilibrium strategies derived in lemma ??, a type β′ ≤ 2k − βh strikes a deal with

both high and low types, giving fitness v +
β′−β−j

2
. Types with β′ ∈ (2k − βh, 2k − βl] strike a

deal with the low types (fitness v + β′−βl
2

) and fight the high types (fitness v − k). Types with

β′ > 2k − βl fight everyone, giving fitness v − k. So the expected fitness for type β′ given a

14



two-type distribution is:

Π(β′; βl, βh, ph, σ
∗) =


(1− ph)

(
v + β′−βl

2

)
+ ph

(
v + β′−βh

2

)
β′ ≤ 2k − βh

(1− ph)
(
v + β′−βl

2

)
+ ph (v − k) β′ ∈ (2k − βh, 2k − βl]

v − k β′ > 2k − βl

This is a piecewise linear function with discontinuities at β′ = 2k − βh and β′ = 2k − βl.

Since βl < 2k, both segments are strictly increasing,since tougher types get a higher fitness due to

getting better deals when in the responder role without leading to more conflict. The third segment

is flat. So, in order for βl and βh to be maximizers, these discontinuities must occur at βl and βh.

For the first discontinuity to lie at βl it must be the case that βl = 2k−βh, and the condition for the

second discontinuity to be at βh is βh = 2k − βl, so both hold if βl + βh = 2k. This also implies

that βl ∈ [0, k] and βh ∈ [0, k].

The condition that fitness is equal at βl and β when βl + βj = 2k becomes:

(1− ph)
(
v +

2k − βh − βl
2

)
+ ph

(
v +

2k − βh − βh
2

)
= (1− ph)

(
v +

2k − βl − βl
2

)
+ ph (v − k)

which simplifies to

(1− ph)v + ph(v − δ) = (1− ph)(v + δ) + ph(v − k) =⇒ ph = δ/k

where δ = k − βl. Since δ ranges from 0 to k, ph can take on any value between 0 and 1. The

probability of conflict is p2h, so this can take any value between 0 and 1 as well.
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Other Classes of Static Equilibria

The definition of an SP-SPE allows for any distribution for the β’s. The analysis above char-

acterizes all SP-SPE with two types. To demonstrate that our central results are not sensitive to

this restriction, we demonstrate that (1) for any finite n, there is a class of SP-SPE with properties

similar to the two-type equilibrium, and (2) there is no SP-SPE that admits a density where a deal

is struck with positive probability.

Proposition 4. For any finite integer m,

i. there exists a class of SP-SPE with m distinct types, and

ii. in this class of equilibria conflict can occur with with any probability between zero and one.

As in the two type case, there is always an equilibrium where all types have toughness greater

than 2k and always fight. So, what remains is to show that there are equilibria with an interior

probability of conflict.

We prove the result for even numbers of types, the proof for an odd number of types is the same

with one difference highlighted in the proof. so the number of types can be written m = 2n for

some integer n. Order the types such that β1 < β2 < ...β2n, and let Pr(βj = βi) = pi. The fitness

for being type β′ in such an equilibrium is:

Pr(β−j ≤ 2k − β′)
(
v +

β′ − E[β−j|β−j ≤ 2k − β′]
2

)
+ (1− Pr(β−j ≤ 2k − β′))(v − k)

As long as Pr(βj < 2k) < 1, the fitness for being β′ = 2k−β1 is strictly higher than the fitness

to being β′ > 2k, so β2n < 2k. By proposition 1, βj ≥ 0, so this is a piecewise linear function

that is weakly increasing on each segment (and strictly increasing for β′ < 2k, with discontinuities

at 2k − βj for all j ∈ {1, ..., 2n}. So for each type to be at a local maximum, a more general

symmetry condition must hold:

Lemma 1. In any finite even type distribution with 2n types, it must be the case that 0 < β1 <
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...βn < k and βi = 2k − β2n+1−i.

Proof If not, the fitness must be strictly increasing at some β′ = βj , violating the condition for a

SP-SPE. If this condition holds, all βj are at a local maxima.

The analogous symmetry condition with an odd number of types is that the median type is at

exactly βj = k and the (even) remainder of types are symmetrically aligned as in the even case.

Next we need to derive a condition for when all of the types attain the same fitness, which will

guarantee all are at a global maximizer of the fitness function. Given the symmetry restriction,

type j strikes a deal with types 1, ...2n− j + 1 and fights the rest, giving fitness:

Π(βj) = P2n−j+1

(
v +

βj − βj
2

)
+ (1− P2n−j+1)(v − k)

= v − k + P2n−j+1

(
k +

βj − βj
2

)

where

Pj =

j∑
i=1

pi

βj =

∑2n−j+1
i=1 piβi∑2n−j+1
i=1 pi

Next we show that for any β1, ...βn meeting the symmetry condition, there exists a SP-SPE

with a probability distribution where βi = 2k − β2n+1−i. Let Pr(βi = β) = pi. Adjacent types

17



getting the same fitness requires:

P2n−j+1

(
k +

βj − βj
2

)
= P2n−j

(
k +

βj+1 − βj+1

2

)

p2n−j+12k = P2n−jβj+1 − P2n−j+1βj +

(
2n−j+1∑
i=1

piβi −
2n−j∑
i=1

piβi

)

p2n−j+12k = (P2n−j+1 − p2n−j+1)βj+1 − P2n−j+1βj + (β2n−j+1p2n−j+1)

p2n−j+12k = P2n−j+1(βj+1 − βj) + p2n−j+1(β2n−j+1 − βj+1)

p2n−j+1(2k − β2n−j+1 + βj+1) = P2n−j+1(βj+1 − βj)

p2n−j+1 = P2n−j+1
βj+1 − βj
βj+1 + βj

for j = 1, ..., 2n− 1. Setting j = 1 gives:

p2n =
β2 − β1
β1 + β2

since P2n = 1. Given this, setting j = 2 gives:

p2n−1 = P2n−1
βj+1 − βj
βj+1 + βj

= (1− p2n)
βj+1 − βj
βj+1 + βj

where p2n is given above. More generally:

p2n−j+1 =

(
1−

2n∑
i=2n−j

pi

)
βj+1 − βj
βj+1 + βj

(5)

This gives a recursive definition for the p2, ...pn’s, which are all strictly positive. So, as long as∑2n
j=2 pj ≤ 1, setting p1 = 1 −

∑2n
j=2 pj makes the pi’s a proper probability distribution. The

18



j = 2n− 1 adjacency condition gives:

p2 =

(
1−

2n∑
j=3

pi

)
β2n − β2n−1
β2n−1 + β2n

β2n − β2n−1
β2n−1 + β2n

p2 ≤

(
1−

2n∑
j=3

pi

)
β2n − β2n−1
β2n−1 + β2n

2n∑
i=2

pi ≤ 1

So, there is a unique pi which is a probability distribution that meets the adjacency conditions.

This completes part i.

For part ii, the probability of conflict is given by the probability that the type indices sum to

something strictly greater than 2n:

pc =
2n∑
i=2

2n∑
j=2n+i−j

pipj

Since βn+1, ...β2n are uniquely determined by β1, ...βn by the symmetry condition and the pi’s are

recursively defined by the βj’s and continuous in each βj , this can be written as pc(β1, ..., βn).

Further, as βi → k from below for i = 1, ..., n, which implies βi → k from above for i =

n+1, ...2n, then pi → 0 for all i > 1, hence p1 → 1 and pc → 0. Similarly, if βi → 0 for i = 1, ..n

and hence βi → 2k, for i = n + 1, ..., 2n, then pn+1 → 1 and pc → 1. So, by the continuity of

pc in the β’s, for any p > 0 there exists a β1, ..., βn and hence distribution of preferences such that

pc = p by the Intermediate Value Theorem, proving the result for even m.

Again, the logic of the proof is similar for odd m, with the restriction that β(m+1)/2 = k and

the other βi = β2n+1−i.

Finally, we show that there is no SP-SPE that admits a density.

Suppose the type distribution admits a density f . Let β ∈ −∞ ∪ R be the lowest β in the

support of f and β ∈ ∞ ∪ R the highest. There is a class of SP-SPE where β > 2k, so suppose
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this is not the case. The expected fitness for being type βj ∈ [β, β] is then:

Π(βj; β, β, σ
∗) =


∫ 2k−βj
β

(
βj+β−j

2

)
f(β−j)dβ−j + Pr(βj + β−j > 2k) (v − k) βj + β < 2k

(v − k) otherwise

Proposition 5. There is no SP-SPE such that β < 2k where the type distribution admits a density.

Proof Suppose not, let the density be f . This implies that Π(βj; f, σ
∗) is continuous in βj . We

derive two contradictory inequalities:

i. It must be the case that β < 2k − β. If not, Π(β; f, σ∗) = v − k. Consider a type

βj = 2k−β−ε. This type will strike a bargain with types [β, β+ε], and since β < 2k the expected

fitness from these bargains will be greater than v − k. So for some ε > 0, Π(2k − β − ε; f, σ∗) >

Π(β; f, σ∗).

ii It must be the case that β > 2k − β. If not, types β never fight, and for small ε > 0 a type

βj = β + ε would never fight, and get a strictly higher fitness than β.

So β + β < 2k and β + β > 2k, a contradiction

In words, if the aggregate toughness of the lowest and highest types is too high, a type slightly

less tough than the toughest type would get a strictly higher fitness than the toughest type. If the

aggregate toughness of the lowest and highest types is too low, a type slightly tougher than the

least tough could always extract a better bargain than the lowest type.

More General Preferences

In principle, preferences could diverge from fitness for any outcome of the bargaining game.

To explore how our results are sensitive to alternative specifications of how preferences evolve, we

first allow the toughness to vary based on whether the actor is in the proposer or responder role.
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Role-based Toughness

For the model where toughness can vary based on whether in the proposer or responder role,

suppose that if a type βmax = (βpmax, β
r
max) gets the highest fitness, then the toughness parameters

for each actor in the subsequent round are given by (βpmax + νpi , β
r
max + νri ) where νpi and νri are

independent and uniformly distributed on [−εp, εp] and [−εr, εr], respectively, where εp, εr > 0.

Following a similar analysis as the main uniform model, the fitness for being type βj when

matched with a population with proposer fitness uniform on [βpm − εp, βpm + εp] and responder

fitness uniform on [βrm − εr, βpm + εr] is:

Π(βpj , β
r
j ;F ;σ) =

1

2
Πp(βpj ;F ;σ) +

1

2
Πr(βrj ;F ;σ)

where Πj is the expected fitness in role j. When in the proposer role the only relevant part of the

distribution is the responder toughness and when in the responder role the only relevant part of the

distribution is the proposer toughness. So, finding the optimal type can be separated into finding

the optimal type in each role.

For the proposer role, it is more straightforward to first consider the fitness for fixed types

(when using SPNE strategies):

πp(βpj , β
r
−j;σ

∗) =


v + k − βr−j βpj + βr−j ≤ 2k

v − k βpj + βr−j > 2k

The fitness for making a deal (the first segment) is higher if v+ k− βr−j < v− k, or βr−j < 2k. So

if βr−j < 2k the optimal proposer toughness is any βpj such that βpj < 2k − βr−j , and if β−j > 2k

then the optimal proposer toughness is any βjp such that βpj > 2k − βr−j . So, if all responder types

are greater than 2k any type such that βpj > 0 gets the highest possible fitness, and hence there can

be no stable distribution using an argument analogous to that in the main model. If all responders
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have toughness less than 2k then any type such that βpj < 0 gets the highest possible expected

fitness, so there can be no stable type distribution of this form either.

So in any stable distribution, there must be some responders with βr−j > 2k and some with

βr−j < 2k. The only proposer type that gets the highest fitness when matched with an individual

with this distribution is βpj = 0. This is because types with βpj < 0 will strike a deal with some

responders with βr−j > 2k, which gives a lower fitness than fighting, and types with βpj > 0 fight

against some types with β−jr < 2k, which gives lower fitness than striking a deal.

So, this can only have a unique maximum at βpj = 0, and hence in any stable preference

distribution βp,∗ = 0. That is, there is never a benefit to having preferences that deviate from

fitness when in the proposer role.

This also implies that the expected fitness for having toughness βrj in the responder role in any

stable preference distribution is:

Πr(βrj ;F
p;σ∗) = Pr(βp−j ≤ 2k − βrj )(v − k + βrj ) + Pr(βp−j > 2k − βrj )(v − k)

=


v − k + βrj βrj ≤ 2k − εp

2k+εp−βr
j

2εp
(v − k + βrj ) +

βr
j−2k+εp

2εp
(v − k) βrj ∈ (2k − εp, 2k + εp]

v − k βrj > 2k + εp

Again, the first segment is linear and increasing, the second segment is quadratic, and the last

segment is constant, though always at a lower level than the peak of the first segment. The quadratic

is maximized at βr = k + εp/2, which is above 2k − εp if and only if k > 3εp/2, so the optimal

toughness nevel in the stable preference distribution is:

βr,∗ =


k + εp

2
k < 3

2
εp

2k − εp k > 3
2
εp
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which is double the toughness of the equilibrium average toughness is the baseline model (if εp =

ε). So, by allowing the toughness to be conditional on whether a player is the proposer or not, the

aggregate toughness remains unchanged, though only responders are irrationally tough.

To compute the probability of conflict, write the type a actor j is in role i as βi,∗ + νj . So, the

probability of conflict in the stable preference distribution is:

Pr(βr + βp > 2k) = Pr(βr,∗ + νr + νp > 2k) =


Pr(νr + νp > k − εp/2) k < 3εp/2

Pr(νr + νp > εp) k > 3εp/2

(6)

Determining the probability of conflict for either case requires computing the distribution of

νp+νr. It is useful to first state a general result about the sum of uniform random variables centered

at zero but with different range:

Lemma 2. Let νh ∼ U [−εh, εh] and νl ∼ U [−εl, εl], where εl ≤ εh. Then:

i. the cumulative density function of νh + νl is given by:

F νh+νl(x) =



0 x < −εh − εl

(x+εl+εh)
2

8εlεh
x ∈ (−εh − εl, εl − εh)

x/(2εh) + 1/2 x ∈ (εl − εh, εh − εl)

1− (−x+εl+εh)2
8εlεh

x ∈ (εh − εl, εl + εh)

1 x > εl + εh

ii. F νh+νl(−x) = 1− F νh+νl(x)

Proof The result is easiest to prove visually. Figure 1 plots the joint density of νl and νh. For any

x, the distribution function is area of the rectangle drawn by the bounds of the distribution below

the line νl + νh = x times the density over the rectangle, which is 1
4εlεh

(i.e., the product of the

individual densities). Clearly for x < −εl − εh none of the rectangle is under the diagonal, so the
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Figure 1: Illustration of CDF of Sum of Uniform Random Variables

νl

ν h

●

εl,εh

●

− εl,− εh

νh + νl=x

νl

ν h

●

εl,εh

●

− εl,− εh

νh + νl=x

νl

ν h

●

εl,εh

●

− εl,− εh

νh + νl=x

distribution function is 0, and when x > εl + εh the entire rectangle is below and the distribution

function is 1.

The left panel shows that for x ∈ (−εl − εh, εl − εh) the region below the diagonal is a right

triangle with equal base and height. The diagonal intersects νh = −εh at νh = x+ εh, so the sides

are length x + εh − (−εl), and hence the area is (x+εl+εh)
2

2
, and multiplying by the density gives

(x+εl+εh)
2

8εlεh
.

The middle panel shows that for x ∈ (εl − εh, εh − εk), the area is a right triangle with area

(2εl)
2

2
plus a rectangle with area 2εl(x − (εl − εh)). Adding these and multiplying by the density

gives:

2εl(x− (εl − εh)) + 2ε2l
4εlεh

=
x

εh
+

1

2

The right panel shows that for x ∈ (εh − εl, εl + εh), the area under the diagonal is the area

of the entire rectangle 4εlεh minus the upper triangle with area (εl+εh−x)2
2

. Combining these pieces
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gives part i.

Part ii follows from part i (or the symmetry of the densities of νl and νh around 0).

So, there are many cases to consider for the probability of conflict, depending on the signs of

εr− εp and k− εp/2, and then where k− εp/2 and εp lie in the five segments of the CDF of νr +νp.

Rather than enumerating all possible cases, we focus on comparative statics analogous to those in

the main text:

Proposition 6. In the unique stable preference distribution to the model with role-based toughness,

the probability of conflict is:

i. equal to the probability of conflict in the baseline if εp = εr,

ii. weakly decreasing in k, and

iii. for any k > 3εp/2, equal to

p =



εr

8εp
εr < εp

εp

8εr
εr ∈ (εp, 2εp)

1
2
− εp

2εr
εr > 2εp

Proof Part i follows from evaluating the fact that β∗,r + β∗,p = 2β∗ (where β∗ is the average

toughness for the main model) and if εr = εp = ε the distribution of εr + εp is the triangle

distribution with CDF given by lemma 2.

Part ii follows from the fact that the derivative of βr,∗ with respect to r is less than or equal to

2.

For part iii, for any k > 3εp/2, the probability of conflict is 1 − F νh+νl(εp) = F νh+νl(−εp).

When εp > εr, −εp must lie on the second segment of the CDF and and is hence the probability of
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conflict is:

(−εp + εp + εr)2

8εpεr
=

εr

8εp
.

When εp < εr, −εp lies on the second segment if −εp < εp − εr =⇒ εr < 2εp and on the third

segment otherwise. Plugging −εp into the relevant segment of the PDF gives the desired result.

Part i implies that allowing role-based toughness changes the equilibrium preferences but not

the equilibrium probability of conflict if the amount of noise in the evolutionary process is the

same for each role. Parts ii-iii examines what happens if the evolution of the toughness in different

roles is more or less noisy. The only case where conflict approaches 0 is if k is large and εr → 0.

This is because in this case βr,∗ → 2k − εp. So, the probability of conflict approaches Pr(νp >

2k− εp) = 0. As noted in the main text, the case as q → 1 in the incomplete information model in

the paper is the same as the limiting case as εp → 0 here.

On the other hand, as εp → 0, the probability of conflict approaches 1/2, four times the prob-

ability in the baseline model. This is because βr,∗ → 2k, and hence any responder with a positive

draw of νr will fight every proposer.

Sacred Values

Next, we consider a very different type of deviation from the objective preferences, intended

to capture the idea that issues subject to bargaining are “indivisible” or that actors may assign

a “sacred value” to attaining a certain share of the prize.∗ For example, assigning a value to

fairness can be captured by assuming an actor faces a large negative shock to their preferences

when accepting a deal that gives them less than v (that is, x < v for the responder and x > v for

the proposer). If both actors – perhaps ethnic or religious groups – are bargaining over territory

∗Ginges et al. 2007; Ginges and Atran 2011.
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they believe to be sacred, then they can assign an arbitrarily low subjective utility to any accepted

deal that does not give them all of this land. Such attitudes are not limited to bargaining over land:

Ryan finds that citizens punish leaders for compromising on issues that are “moralized,” which

certainly applies to many issues where disagreement leads to conflict.†

The formal definition of sacred value preferences is:

Definition A player has (x, x)-sacred value preferences if her subjective utility function in role i

is:

u(i, x, a) =


s a = 1, i = p, x > x or a = 1, i = r, x < x

0 a = 0

gi(x) a = 1, i = p, x ≤ x or a = 1, i = r, x ≥ x

for any s < 0, strictly positive and increasing gr(x), and strictly positive and decreasing gp(x).

When two actors i and j are matched with i in the proposer role and j in the responder role,

by standard logic i will offer xj and it will be accepted if xj ≤ xi and will make an offer which is

rejected if xj > xi.

Proposition 7. An actor with (x, x)-sacred value preferences uses the same SPNE strategy and

hence gets the same fitness as an actor with toughness (βr, βp) = (v + k − xp, v − k + xr)

Now consider a noisy evolutionary process where in each generation the type that gets the

highest fitness (call these (xmax, xmax)) reproduces, and the next generation has sacred value pref-

erences where xi is uniformly distributed on [xmax − εp, xmax + εp] and xi is uniformly distributed

on [xmax − εr, xmax + εr]. Then by an identical analysis, there is a unique stable distribution of

†Ryan 2016.
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preferences centered around x∗ = v + k − βp,∗ = v + k and:

x∗ = v − k + βr,∗ =


v + εp/2 k < 3εp/2

v + k − εp k ≥ 3εp/2

and the probability of conflict is the same as in the role-based toughness case.

More General Preferences

This equivalence suggests that the same equilibrium behavior and chance of conflict can occur

for a much wider class of preferences differing from the objective payoffs. A complete description

of a players preferences is a 4−tuple u = (wp, wr, ap(x), ar(x)), where wr ∈ R and wp ∈ R are

the preferences over conflict when in the responder and proposer role, respectively, and ap(x) and

ar(x) are the subjective utility when offer x is accepted in the respective roles. The only restrictions

we place on the preferences are the following:

Assumption 1. The preferences for the actors u are such that:

i) ap is weakly decreasing in x and ar is weakly increasing in x

ii) there exists an x ∈ R such that x = min{x : ap(x) ≥ wp} and an x ∈ R such that x = max{x :

ar(x) ≤ wr}.

In words, i implies the proposer always prefers smaller accepted offers and the responder al-

ways prefers higher accepted offers. Part ii implies that there is a well defined “highest acceptable

offer” for the proposer and a “lowest acceptable offer” for the responder. A somewhat more intu-

itive assumption which implies this property is if ap(x) is right-continuous and wp ∈ Range(ap),

and similarly ar(x) is left-continuous and wr ∈ Range(ar). That is, the cases that need to be

ruled out are when either the fighting fitness lies outside the range of possible fitness for accep-

tance or there is a discontinuity in the acceptance fitness which renders the minimum or maximum

expressions undefined.
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Suppose two players are matched to play the bargaining game, and call the player in the pro-

poser role i and in the responder role j. Then the proposer role either offers xrj or an offer which

is rejected, and prefers to offer xrj if and only if xrj ≤ xi. That is, if there is a division weakly pre-

ferred to war for both players, they strike a bargain at the minimal offer accepted by the responder.

Otherwise, they fight. So, a more general statement of lemma ?? is:

Lemma 3. Suppose players i and j have preferences meeting assumption 1, and i is placed in the

proposer role with j in the responder role. Then in any SPNE:

i. If xrj ≤ xpi , then the proposer offers xrj and it is accepted

ii. If xrj > xpi , then the proposer makes an offer less than xrj which is rejected.

So, any preferences meeting equation 1 induce identical behavior as the (x, x)-sacred value

preferences. While explicitly modeling the evolution of preferences is more complex, as it requires

specifying not just how a real-valued parameter changes but how the entire preference function

evolves. However, as long as the resulting x and x behave in a similar manner defined above,

identical results arise in this more general setting.
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