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I Don’t Know
MATTHEW BACKUS Columbia University

ANDREW T. LITTLE University of California, Berkeley

Political decision makers make choices in a complex and uncertain world, where even the most
qualified experts may not know what policies will succeed. Worse, if these experts care about their
reputation for competence, they may be averse to admitting what they don’t know. We model the

strategic communication of uncertainty, allowing for the salient reality that sometimes the effects of
proposed policies are impossible to know. Our model highlights the challenge of getting experts to admit
uncertainty, even when it is possible to check predictive success. Moreover, we identify a novel solution:
checking features of the question that only good experts will infer—in particular, whether the effect of
policies is knowable—can induce uninformed experts do say “I Don’t Know.”

“[I]t is in the admission of ignorance and the admission of
uncertainty that there is a hope for the continuous motion of
human beings in some direction that doesn’t get confined,

permanently blocked, as it has so many times before in
various periods in the history of man.”

—Richard Feynman, John Danz Lecture, 1963

“Policy-making is hard.”
—Callander (2011)

INTRODUCTION

P olitical decision makers frequently make disas-
trous choices. They waste blood and treasure on
unwinnable wars, destroy economies with poor

monetary policy, and underestimate the threat of coups
or revolutions before their opponents show up at the
gates. Sometimes poor decisions are made despite the
availability of information about how they will turn out.
Decision makers may not consult the right experts, or
they may ignore their advice. At other times, the best
course of action isn’t even knowable, and the real
danger is being persuaded to take risky action by
“experts”who pretend to knowwhat policies will work.

Most work on strategic communication in political
science focuses on problems driven by differences of
preference (“bias”) among experts and decision
makers (e.g., Gailmard and Patty 2012; Gilligan and
Krehbiel 1987; Patty 2009). However, even if experts
have the same policy preferences as decision makers
do, some are more competent than others are at assess-
ing the available evidence required to give good advice.
And, as a literature in economics and finance on career
concerns following Holmström (1999) makes clear,
experts’ desire to appear competent (“reputational
concerns”) can distort the actions of agents, including
the advice they give to principals (e.g., Ottaviani and
Sørensen 2006).

We bring this style of communication model to a
political context and also place a novel focus on the
difficulty of policy questions. As is familiar to anyone
who has tried to study the causal effect of policies
(empirically or theoretically), some questions are
harder to answer than others. Uncertainty may be
driven by expert incompetence or by the difficulty of
the policy question. However, as long as knowledge
about the effects of policies is correlated with compe-
tence, uninformed experts (competent or not) risk a
reputational hit for admitting uncertainty. As a result,
experts who care about perceptions of their compe-
tence will be reluctant to say “I don’t know.”

Can this problem be solved by validating experts’
claims, by asking other experts, checking other sources,
or waiting to see if their predictions come true?Our core
contention is that the answer depends on what exactly
gets validated. Perhaps the most intuitive kind of valid-
ation iswhatwe call state validation, or checkingwhether
the expert claims are correct. We find that—at least by
itself—this is not effective at getting uninformed experts
to report their ignorance. On the other hand, difficulty
validation, which means checking whether the question
was answerable in the first place, tends to be muchmore
effective at inducing experts to admit uncertainty.

We develop a formal model that highlights this prob-
lem and our proposed solution in a clear fashion. A
decision maker (DM, henceforth “she”) consults an
expert (henceforth “he”) before making a policy deci-
sion. The DM is uncertain about a state of the world
that dictates which policy choice is ideal. TheDM is also
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uncertain about the quality of the expert and whether
the optimal policy is knowable. Experts are either
competent (“good”) or incompetent (“bad”), and the
question of which policy is better is either answerable
(“easy”) or not (“hard”). Bad experts learn nothing
about the state of the world. Good experts learn the
state if and only if the question is answerable. This
means there are two kinds of uninformed experts: bad
ones who never learn truth and good ones faced with an
unanswerable question.
The expert then communicates a message to the deci-

sion maker, who chooses a policy. Finally, the decision
maker—potentially endowed, ex post, with information
about the state or question difficulty—forms posterior
beliefs about the expert quality. The best decisions are
made in an honest equilibrium, where experts who know
which policy is better reveal this information and the
uninformed types all say “I don’t know.”
Our main analysis studies the scenario where an

expert primarily cares about his reputation. That is, the
expert has relatively little concern for the quality of the
policy made, though he is unbiased in the sense that the
expert and DM agree on which policy is best (condi-
tional on the state). If the DM gets no ex post informa-
tion about the state or difficulty—the no validation case
—our answer is bleak. Since they face no chanceof being
caught guessing, uninformed types could claim to know
whether the policy would succeed and appear compe-
tent. As a result, honesty is impossible.
What if the DM learns the truth about the ideal policy

(state validation) before evaluating the expert? One
might expect that state validation can induce honesty,
since it is possible to “catch” uninformed experts guess-
ing incorrectly. But what should the DM infer when
seeing an incorrect guess: that the expert is incompetent
or just that he is uninformed? Under a restriction to
strategies and beliefs related to the Markov refinement
common to repeated games,we show that the competent
uninformed experts and the incompetent uninformed
experts must play the same strategy. Further, upon
observing an incorrect guess, the DM should infer that
the expert is uninformed but still possibly competent
(i.e., the exact same inference if the expert said “I don’t
know”). Since the expert might get away with guessing
and being caught is noworse than admitting uncertainty,
an honest equilibrium is still not possible.
The limits of state validation echo past pessimistic

results about how reputational concerns limit commu-
nication (e.g., Ottaviani and Sørensen 2006). However,
our focus on the importance of problem difficulty also
suggests a novel path forward. The key barrier to
honest communication with state validation is that it
does not allow the competent experts asked an
unanswerable policy question to differentiate them-
selves from the incompetent experts. Consider this
from the perspective of a competent but uninformed
expert: he knows that he is uninformed because it is
impossible to know which policy is better, but precisely
for this reason he can’t do a better job of guessing the
state than an incompetent expert. Where the compe-
tent expert does have a definitive advantage over the
incompetent expert is not in knowing which policy is

better but in knowing whether the ideal policy is know-
able in the first place.

We build on this insight to reach our key positive
result: if the DM learns ex post whether the question
was answerable (difficulty validation), partial if not
complete admission of uncertainty is possible.1 The
good uninformed experts admit uncertainty, confident
that theDMwill learn the ideal policywasn’t knowable.
Bad expertsmay admit uncertainty as well if this is safer
than guessing and potentially getting caught making a
predictionwhen the validation reveals that the question
was unanswerable.

These results have practical implications for how
political decision makers should structure their
interactions with experts. Consulting experts with an
interest in good policy being made or investing in
methods to check whether their predictions are correct
(e.g., running pilot studies) is useful for some purposes,
but not for eliciting admission of uncertainty. Rather, it
is important for decision makers to be able to eventu-
ally learn whether the questions they ask are answer-
able.We discuss several ways this can be accomplished,
such as consulting multiple experts or ensuring decision
makers (or someone who evaluates experts) have some
general expertise in research methods in order to be
able to evaluate what claims are credible.

In addition to highlighting the importance of diffi-
culty validation, we derive several comparative static
results. First, incentives to guess are weaker when
experts are generally competent. This implies that
admission of uncertainty can be more frequent in
environments with more qualified experts. Second,
when questions are ex ante likely to be answerable,
experts face a stronger incentive to guess. So, the
quality of policies can be lower in environments where
the ideal policy is more frequently knowable because
this is precisely when bad experts guess the most,
diluting the informative value of any message.

RELATED WORK

Uncertainty about ideal policy has at least two causes.
First, different people want different things. Even if the
effects of policy choices are well known, it may be hard
to determine what is best collectively. Second, consen-
sus about the effects of different policies is rare. The
world is complicated, and frequently the most credible
research gives limited if any guidance about the effects
of political decisions.

Decision makers can try to learn about what policies
will work in several ways. They can hold debates about
policy (Austen-Smith 1990), try to learn from the
experience of other polities, or experiment with new
policies on a tentative basis (Callander 2011). Either as
a part of these processes or separately, they can consult
experts employed by the government (staffers, bureau-
crats, other politicians) or elsewhere (think tank

1 As elaborated in the formal analysis, this also requires either non-
zero policy concerns or state validation.
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employees, academics, pundits; Calvert 1985)2 or dele-
gate to them where optimal (Dessein 2002).3

Even if there are experts who have a solid grasp on
the wisdom of proposed policies, there are always less
competent “experts” who lack valuable information
but may still pretend to be informed. And with heter-
ogenous preferences, even good experts may disagree
with decision makers about how to best use this infor-
mation. As a result, the challenges to knowing the ideal
course of action in the first place (ignorance and pref-
erence bias) generate parallel problems of getting this
information into the hands of actual policy makers.
Further, if the policy makers themselves have more
information than voters and heterogenous compe-
tence, the signaling implications of their choices may
also lead to suboptimal policies.
The main literatures that we draw on study these

problems, and Table 1 presents a classification of the
most related work to clarify where our model fits
in. The rows correspond to the identity of the
“sender,” and the columns to whether the main conflict
of interest is differing policy preferences or the sender’s
desire to appear competent.
Most of the political science literature on decision mak-

ing under uncertainty highlights the problems that arise
when actors (experts, policy makers, bureaucrats, voters)
havedifferent preferencesor ideologies.The top left cell of
Table 1 contains examples where, followingCrawford and
Sobel (1982), an informed advisor or expert (not the
decision maker) may not communicate honestly because
of a difference in ideal policy. Much of this work has
studied how different institutional features like committee
rules in congress (Gilligan and Krehbiel 1987), bureau-
cratic hierarchies (Gailmard and Patty2012), alternative
sources of information (Gailmard and Patty2013), and
voting rules (Schnakenberg 2015) either solve or exacer-
bate communication problems. Formalmodels of commu-
nication in other political settings such as campaigns
(Banks 1990), lobbying (Schnakenberg 2017), and inter-
national negotiations (Kydd 2003) also focus on how
different preferences affect equilibrium communication.

Our main innovation with respect to the formal
theories of expert communication in political science
is to bring focus to the other main barrier to communi-
cation: reputation concerns (right column of Table 1).
Most related work on reputation for competence
focuses not on experts but politicians themselves (bot-
tom right cell of Table 1). In some of these models
(following Holmström 1999), politicians exert effort
(e.g., Ashworth 2012) or otherwise manipulate the
information environment (e.g., Little 2017) to make
signals of their ability or performance more favorable.
Closer to our setting, others model the competence of
decision makers as affecting their ability to discern the
best policy. In these models, concern about reputation
can lead to suboptimal policy choices if, for example,
voters think certain policies are ex ante more likely to
be favored by competent politicians (Cane–Wrone et
al. 2001). The bottom left cell of Table 1 contains
examples of models where politicians also want to
develop a reputation for being ideologically aligned
with citizens (Fearon 1999), which sometimes creates
trade-offs with concerns for competence (Fox and
Shotts 2009).4

We argue that studying the reputation concerns of
experts (top right cell of Table 1) is fundamental in
political settings. By definition, experts typically have
more policy-relevant information than politicians
do. Further, particularly in a cheap-talk environment
where experts have no direct control over the policy
being made (and frequently have a relatively small
influence on what choice is made), they sometimes, if
not usually, care more about their reputation for com-
petence than the effect of their advice on policy. To our
knowledge, there are no other models of “reputational
cheap talk” in political science. Related work in other
disciplines has shown that reputation concerns lead
experts to bias and overstate their reports in order to
convince a decision maker that they are the “good”
type (e.g., Ottaviani and Sørensen 2006), though the
exact kind of lie this induces may depend on the career

TABLE 1. Classification of Related Literature

Preference bias Reputation for competence

Expert/advisor Crawford and Sobel (1982),
Gilligan and Krehbiel (1987),
Gailmard and Patty (2013)

Ottaviani and Sørensen (2006),
Rappaport (2015),
This Paper

Decision maker Fearon (1999),
Fox and Shotts (2009)

Holmström (1999),
Ashworth (2012),
Canes–Wrone et al. (2001)

Note: Hereweclassify related literature bywhether the informedparty/sender is anadvisor (top row) or the actual decisionmaker (bottom row)
and whether the main conflict of interest is different preferences over ideal policy (left column) or reputation for competence (right column).

2 See also Manski (2019) for a broader discussions about communi-
cation of scientific uncertainty in policy analysis.
3 See Fehrler and Janas (2019) for a model and experiment on
delegation with a focus on competence.

4 Not all work in the bottom row involves choices made by politicians.
For example, Leaver (2009) suggest that bureaucrats with reputation
concerns (and a desire to avoid public criticism) may make subopti-
mal choices (bottom right cell), and judges fear having decisions
overturned by higher courts who may have different preferences
(e.g., Hübert 2019) (bottom right).
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stage of the agent (Prendergast and Stole 1996) or the
precise information structure (Rappaport 2015).
In addition to bringing this style of model to a

political context, we contribute to the reputational
cheap-talk literature by focusing on heterogeneity in
the difficulty of questions and introducing the notion of
ex post validation of question difficulty rather than
whether experts’ claims were “correct.” In one sense,
this is related to the precision of experts’ private infor-
mation inmodels such asOttaviani andSørensen (2006)
or their accuracy in related and recent work on screen-
ing forecasters by Deb, Pai, and Said (2018)—it creates
variation in the quality of signals. However, there is an
important feature that differentiates difficulty as we
have formulated it: it is a property of the problem itself,
not the expert or the expert’s signal. This drives our
results. Validating the difficulty of problems generates
the key informational wedge between good unin-
formed experts (who know the problem difficulty)
and bad experts (who do not).5

THE MODEL

Our model is motivated by the following scenario: a
decision maker (abbreviated DM, pronoun “she”) is
making a policy choice. The DM could be the chief
executive of a country, a local executive (governor,
mayor), or the head of a bureaucracy. There is an
unknown state of theworld that affects the optimal policy.
However, the DM does not observe this state; to this end
she employs an expert (pronoun “he”). Experts may be
competent or incompetent. Competent experts some-
times know the state of the world, but at other times the
state is unknowable. Incompetent experts know nothing.
For concreteness, we will use a running example

where the policy in question is how much to restrict
the emissions of a chemical, and the DM is the head of
an environmental agency with statutory authority to set
this regulation level. The expert could be a scientist
within the agency or hired as an external consultant. A
natural source of uncertainty is whether the chemical in
question is harmful to humans. If it is harmful, the DM
will want to choose more stringent regulations; if it is
not harmful there is no reason to regulate emissions.
The expert will learn whether the chemical is harmful if
two things are true: (1) he is competent enough to
locate and digest the relevant scientific literature and
(2) this literature contains an answer to whether the
chemical is harmful. If the expert is not competent or
there is no scientific consensus on the effect of the
chemical, the expert will not learn anything useful.

The Information Environment

We formalize this information structure as follows.
State of the World. Let the state of the world

be ω∈ Ω� 0,1f g. The state of the world encodes the
decision-relevant information for the DM (e.g., ω¼ 1 if
the chemical in question is harmful to humans and
ω¼ 0 if not). It is unknown to the DM at the outset,
which is why she consults an expert.

Let p1 represent the common knowledge probability
that the state is 1, so it is equal to 0 with probability
1 − p1. To reduce the cases to consider, we also assume
that ω¼ 1 is the ex ante more likely state, so p1 ≥ 1∕2.6

Expert Types. The expert has a type θ ∈ Θ� g,bf g,
which indicates whether he is good (able to digest the
relevant scientific literature) or bad (not able to digest
the scientific literature). For linguistic variety, we often
call good experts “competent” and bad experts “incom-
petent”. Let pg ∈ 0,1ð Þ be the probability than an
expert is good, and so 1 − pg represents the probability
of a bad expert. This probability is common knowledge,
and the expert knows his type.

Question Difficulty. The difficulty of the question is
captured by another random variable, δ∈ Δ� e,hf g.
That is, the question may be easy (the scientific litera-
ture is informative about whether the chemical is harm-
ful), or hard, (the best research does not indicate
whether the chemical is harmful). Let pe be the com-
mon knowledge probability that δ¼ e, so δ¼ h with
probability 1 − pe. The difficulty of the question is not
directly revealed to either actor at the outset.

Expert Signal. The expert’s type and the question
difficulty determine what he learns about the state of
the world. In our main analysis, we assume that the
expert receives a completely informative signal if and
only if he is good and the question is easy. If not, he
learns nothing about the state. (In section 3 of the
Supplemental Information, we analyze a more general
information structure, which only assumes that a signal
is more likely to be informative when the expert is good
and the question is easy). Formally, let the signal be

s¼
s1 ω¼ 1,θ¼ g and δ¼ e

s0 ω¼ 0,θ¼ g and δ¼ e

s∅ otherwise:

8><>: (1)

In what follows, we will often refer to an expert who
observes s0 or s1 as informed and an expert who observes
s∅ as uninformed. Importantly, this distinction is not the
sameas good and bad. If an expert is informedhemust be
good because bad experts always observe s∅. However,
an uninformed expert may be good (if δ¼h) or bad.

An important implication of our signal structure is
that the good expert infers δ from his signal because he
observes s0 or s1 when δ¼ e and s∅ if δ¼ h. More
concretely, a competent expert can review the relevant
literature and always determine whether the harmful-
ness of a chemical is known. On the other hand, bad5 The closest to what we are calling difficulty in the prior literature

that we are aware of is the information endowment of managers in
Dye (1985) and Jung and Kwon (1988), in an altogether different
setting where shareholders are uncertain as to the informational
endowment of managers.

6 By the symmetry of the payoffs introduced below, substantively
identical results hold if state 0 is more likely.

I Don’t Know

727

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
9.

15
5.

34
.8

1,
 o

n 
29

 Ju
l 2

02
0 

at
 1

5:
53

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

03
05

54
20

00
02

09

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0003055420000209


experts, who always observe s∅, learn nothing about
the question difficulty.

Sequence of Play and Payoffs

The game proceeds in the following sequence: first,
Nature picks the random variables (ω, θ, δ), according
to independent binary draws with the probabilities p1,
pg, and pe, specified above. Second, the expert observes
his competence and signal and chooses a message from
a infinite message spaceM. The information sets of the
expert are summarized in Figure 1. There are four: first,
the expert may be bad; second, the expert may be good
and the question hard; third, the expert may be good,
the question easy, and the state 0; and finally, the expert
may be good, the question easy, and the state 1.
Next, the DM observes m and takes an action

a∈ 0,1½ �, the policy choice. Her information set in this
stage consists only of the expert report; that is,
IDM1 ¼ mð Þ.
In the running example, we can interpret a as the

stringency of regulations applied to the chemical in
question (restrictions on emissions, taxes, resources to
spend on enforcement). To map cleanly to the formal-
ization, a¼ 0 corresponds to the optimal policy if the
chemical is not harmful. Policy a¼ 1 corresponds to the
optimal level of regulation if the chemical is harmful.
Formally, let v a,ωð Þ be the value of choosing policy

a in state ω. We assume the policy value is given
by v a; ωð Þ� 1 − a − ωð Þ2. If taking a decisive action of
a¼ 0 or a¼ 1, the value of the policy is equal to 1 for
making the correct choice (a¼ω) and 0 for making the
wrong choice (a¼ 1 − ω). Taking an interior action
(0 < a < 1) gives an intermediate policy value, where
the v function implies an increasing marginal cost the
further the action is from the true state. This function is
common knowledge, but since the DM may be uncer-
tain about ω, he may be uncertain about how the policy
will turn out and hence the ideal policy. Let
π1 ¼ℙ ω¼ 1jIDM1ð Þ denote the DM’s belief that
ω¼ 1 when he sets the policy. Then, the expected value
of taking action a is

1 − π1 1 − að Þ2þ 1 − π1ð Þa2
h i

, (2)

which is maximized at a¼ π1.

The quadratic loss formulation conveniently captures
the realistic notion that when the expert does not learn
the state, the decision maker makes a better policy
choice (on average)when learning this rather than being
misled into thinking the state is zero or one. That is, in
our formalization it is best to pick an intermediate level
of regulation when it is unclear whether the chemical is
harmful (e.g., modest emissions restrictions, labeling
requirements). Formally, if the question is unsolvable,
the optimal action is a¼p1, giving an average payoff of
1 − p1 1 − p1ð Þ, which is strictly higher than the average
value of the policy for any other action.

After the policy choice is made, the DMmay receive
some additional information (validation), and she then
forms an inference about the expert competence
πg �ℙ θ ¼ gjIDM2ð Þ. Different validation regimes
(described below) affect what information the DM
has at this stage, IDM2.

The decision maker only cares about the quality of
the policy:

uDM ¼ v a; ωð Þ: (3)

So, as derived above, the DM will always pick a policy
equal to her posterior belief that the state is 1, π1.

The expert cares about the belief that he is compe-
tent (πg) and potentially also about the quality of the
policy choice. We parameterize his degree of policy
concerns by γ≥ 0 and write his payoff

uE ¼ πgþ γv a,ωð Þ: (4)

We first consider the case where γ¼ 0; that is, the
expert only cares about his reputation.We then analyze
the case where γ> 0, focusing attention on the case
where policy concerns are small (γ! 0) in the
main text.

Validation

Finally, we formalize how different kinds of ex post
validation affect what the DM knows (IDM2) when
forming a belief about the expert competence. For
our regulation example, there are several ways the
DMmight later learn things about the state or difficulty
of the question.

FIGURE 1. Nature’s Play and Experts’ Information Sets
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First, theremay be studies in progress whichwill later
clearly indicate whether the chemical is harmful. Alter-
natively, if the question is whether the chemical has
medium or long-term health consequences, this may
not become clear until after the initial regulation deci-
sions are made. To pick a prominent contemporary
example, the degree to which we should regulate “vap-
ing” of nicotine and cannabis depends on the long-term
health consequences of this relatively new technology
—perhaps relative to smoking—which are not cur-
rently known.
Second, the DM could consult other experts (who

may themselves have strong or weak career concerns).
These other experts could be asked about the state
of the world or perhaps the quality of the evidence on
dimensions the DM may not be able to assess
(Anecdotal evidence or scientific? Randomized control
trials or observational studies? Have they been repli-
cated? Human or animal subjects?).
In other contexts, validation about the state of the

world could naturally arise if it is about an event that
will later be realized (the winner of an election, the
direction of a stock’s movement) but where the DM
must make a choice before this realization. Alterna-
tively, in many policy or business settings, the decision
maker may be able to validate the expert’s message
directly, whether through experimental A/B testing
or observational program evaluation. Closer to diffi-
culty validation is the familiar notion of “peer
review,” whereby other experts evaluate the feasibil-
ity of an expert’s design without attempting the ques-
tion themselves. Another possibility is when the
decision maker has expertise (substantive or meth-
odological) in the general domain of the question but
does not have the time to investigate herself, so she
may be able to validate whether the question was
answerable only after seeing what the expert comes
up with.
Alternatively, subsequent events may reveal auxil-

iary information about whether the state should have
been knowable, such as an extremely close election
swayed by factors which should not have been ex ante
predictable (i.e., this reveals that forecasting the winner
of the election was a difficult question).
Formally, we consider several variations on IDM2. In

all cases, the structure of IDM2 is common knowledge.
In the no validation case, IDM2 ¼ mð Þ. This is meant

to reflect scenarios where it is difficult or impossible to
know the counterfactual outcome had the decision
maker acted differently. The state validation case,
IDM2 ¼ m,ωð Þ, reflects a scenario in which the DM
can check the expert’s advice against the true state
of the world. In the difficulty validation case,
IDM2 ¼ m,δð Þ, meaning that the DM learns whether
the question was hard (i.e., whether the answer could
have been learned by a good expert). In the full valid-
ation case, IDM2 ¼ m; ω; δð Þ, the DM learns both the
state and the difficulty of the question.
To be clear, many of the motivating examples

blend validation about the state and difficulty. We
consider the cases of “pure” difficulty or state valid-
ation to highlight what aspects of checking expert

claims are most important for getting them to admit
uncertainty.

EQUILIBRIUMDEFINITIONANDPROPERTIES

The standard solution concept for a model like ours
(with sequential moves and incomplete information) is
perfect Bayesian equilibrium (PBE). While our central
conclusions hold when using this solution concept, they
become much clearer when we add a refinement that
builds on the Markov restriction common to dynamic
games of complete information (Maskin and Tirole
2001). In this section, we define the equilibrium con-
cept in the context of our game; AppendixA contains a
more general definition and detailed discussion of how
the results change when using PBE. Appendix A also
contains a discussion of past usage of related refine-
ments; in short, there are several applied papers that
use the same restriction of strategies that we employ,
but to our knowledge this is the first paper to make use
of the refinement to beliefs that the Markov strategies
restriction implies.

Markov Sequential Equilibrium (MSE)

TheMarkov restriction in repeated games requires that
if two histories of play (h1 and h2) result in a strategic-
ally equivalent scenario starting at both histories
(meaning that the players have the same expected
utilities over the actions taken starting at both h1 and
h2), then the players must use the same strategies
starting in both histories. The analogous restriction in
our setting has implications for strategies and beliefs.

In terms of strategies, we require that if two types of
expert face a strategically equivalent scenario, they
must play the same strategy. Most important to our
model, in some cases a competent but uninformed
expert and an incompetent expert have the exact same
expected utility (for any DM strategy). Perfect Bayes-
ian equilibrium would allow these two types to play
different strategies, despite the fact that they face
identical incentives; the Markov restriction requires
them to play the same strategy. Our restriction to
beliefs essentially assumes that, even when observing
an off-path message, the DM still believes that the
expert plays some Markov strategy.

Formally, let σθ,s mð Þ be the probability of sending
message m as a function of the sender type, π1 mð Þ be
the posterior belief that the state is 1 given messagem,
πg m;IDM2ð Þ be the posterior belief about the expert’s
competence, and a mð Þ be the policy action given mes-
sage m. Let UE and UDM be the expected utilities for
each player.

Perfect Bayesian equilibrium requires that both play-
ers maximize their utility given the other’s strategy and
their beliefs and that these beliefs are formed by Bayes’
rule when possible. To these we add two requirements:

Definition 1. AMarkov sequential equilibrium to the
model is a PBE which also meets the following require-
ments:
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• (Expert Markov Strategies): If there are two types
θ0, s0ð Þ and θ00,s00ð Þ such that
UE m;θ0,s0ð Þ ¼UE m;θ00, s00ð Þ for all m given the DM
strategies and beliefs, then σθ0 ,s0 mð Þ¼ σθ00,s00 mð Þ for all m.

• (DM Markov Consistency): For all m and IDM2,
there exists a sequence of non-degenerate Markov
strategies for the expert σk, with corresponding
beliefs formed by Bayes’ Rule πk1 mð Þ and
πkg m, IDM2ð Þ such that π1 mð Þ¼ lim

k!∞
πk1 mð Þ and

πg m, IDM2ð Þ¼ lim
k!∞

πkg m, IDM2ð Þ.

The key implication of Markov consistency is to rule
out off-path inferences about payoff-irrelevant infor-
mation, because off-path beliefs that condition on
payoff-irrelevant information cannot be reached by a
sequence of Markov strategies. Our restriction is
related to that implied by D1 and the intuitive criter-
ion (Cho and Kreps 1987). However, where these
refinements require players to make inferences about
off-path play in the presence of strict differences of
incentives between types, our restriction rules out
inference about types in the absence of strict differ-
ences of incentives.
We use this solution concept for two reasons. The

first is theoretical. People have endless “private
information” that they could, in principle, condition
their behavior on. In a more complex but realistic
version of our model, the expert may have private
information about not only what he learns about the
chemical in question but also about his personal
policy preferences, views on what kinds of scientific
evidence are credible, and what he had for breakfast
in the morning. When observing an off-path message,
PBE would allow for updating (or not) on any of
these dimensions regardless of their relevance to
the interaction at hand. The Markov strategies
restriction provides a principled and precise justifica-
tion for which kinds of private information experts
can condition their strategies on7 (Beliefs about the
effects of the chemical in question? Usually. What
evidence is credible? Sometimes. Breakfast?
Rarely8). The Markov beliefs restriction is then a
logical implication of what observers can update on
when observing off-path messages.
The second reason is more practical: our main result

about the importance of difficulty validation for get-
ting experts to admit uncertainty is nearly immediate
when using this restriction. As demonstrated in
Appendix A, similar results hold when analyzing
PBE, but since the set of PBE is much larger, the
comparisons are not as clean.

Properties of Equilibria

Since we allow for a generic message space, there will
always be many equilibria to the model even with the
Markov restrictions. To organize the discussion, we will
focus on how much information can be conveyed
(about ω and θ). On one extreme, we have babbling
equilibria, in which all types employ the same strategy,
and the DM learns nothing.

On the other extreme, there is never equilibrium
with full separation of types. To see why, suppose there
is a message that is only sent by the good but unin-
formed types mg,∅ (“I don’t know because the optimal
policy isn’t clear”) and a different message only sent by
the bad uninformed typesmb,∅ (“I don’t know because
I am incompetent”). If so, the policy choice upon
observing thesemessages would be the same.However,
the reputation payoff for sendingmg,∅ is strictly higher,
so the bad types have an incentive to deviate.

Still, such full separation is not required for the
expert to communicate what he knows about the state.
That is, there may still be equilibria where the unin-
formed types say “I don’t know” (if not why), and the
informed types report the state of the world. We call
these honest equilibria. In themain text, we focus on the
simplest version of an honest equilibrium, where there
is a unique message mx sent by each type observing
sx with probability 1, x∈ 0, 1, ∅f g; see Appendix B for
a more general definition. This is a particularly import-
ant class of equilibria in our model because it conveys
the most information about the state:

Proposition 1. The expected value of the policy in an
honest equilibrium is pgpeþð1 − pgpeÞ 1 − p1 1 − p1ð Þ½ � � �v,
which is strictly greater than the expected value of the
policy in any equilibrium that is not honest.

Proof. Unless otherwise noted, all proofs are in
Appendix B. □

This result formalizes our intuition that it is valuable
for theDM to learn when the expert is uninformed, and
it follows directly from the convexity of the loss func-
tion for bad policies. For example, if the expert on
environmental policy sometimes says that a chemical
is harmful (or is not harmful) when the truth is that he
isn’t sure, the regulator will never be entirely sure what
the optimal policy is. Her best response to this garbled
message is to not regulate as aggressively as she would
if knowing the chemical is harmful for sure, even when
the expert fully knows that this is the case.

Aswewill see, honest equilibria tend to fail when one
of the uninformed types would prefer to “guess,”mim-
icking the message of the informed types. So, the other
equilibria we consider in the main text are ones where
the informed types still send their respective messages
m0 andm1, but the uninformed types at least sometimes
send one of these messages. We refer to sending one of
these messages as “guessing,” and sending m∅ as
“admitting uncertainty.” See Appendix B for a defin-
ition of what it means to admit uncertainty with more
general messaging strategies and section 2 of the Sup-
plemental Information for an extensive discussion of
why focusing on this class of messaging strategies sac-
rifices no meaningful generality for our results.

7 Of course, a classic interpretation of mixed strategies is that the
sender conditions on some random (and “irrelevant”) information
like a coin flip. However, as discussed in Appendix A, if mixed
strategies are viewed as the limit of pure strategies with payoff
perturbations a la Harsanyi (1973), then only Markov strategies are
possible.
8 Though see Cho and Kreps (1987, section II).
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Combined with proposition 1, these definitions high-
light why admission of uncertainty is important for
good decision-making. In any equilibriumwith guessing,
the fact that the uninformed types send messages asso-
ciatedwith informed types leads toworse policies than in
an honest equilibrium. This is for the two reasons high-
lighted in our opening paragraph. First, when the expert
actually is informed, his advice will be partially dis-
counted by the fact that the DM knows some unin-
formed types claim to know which policy is best. That
is, decision makers may ignore good advice. Second,
when the expert is uninformed, hewill induce theDM to
take more decisive action than the expert’s knowledge
warrants; that is, decision makers may take bad advice.

WHEN IS ADMISSION OF UNCERTAINTY
POSSIBLE?

Between the four possible validation regimes and
whether the expert exhibits policy concerns, there are
many cases of the model to analyze. In this section we
show that theMarkov restrictions and some simple incen-
tive compatibility constraints quickly allow us to seewhen
admission of uncertainty is impossible regardless of the
particular parameter values.We then provide a complete
analysis of one case where admission of uncertainty is
possible but not guaranteed for more subtle comparative
static results. In other words, we first highlight our nega-
tive results about state validation (and discuss why they
do not afflict difficulty validation), and we then derive
concrete positive results about difficulty validation in the
next section. Section 1 of the Supplemental Information
contains a full analysis of the remaining cases.
Markov sequential equilibrium has two main implica-

tions: Markov strategies, which requires that payoff-
irrelevant information cannot affect equilibrium play,
and Markov consistency, which requires that off-path
beliefs cannot update on payoff-irrelevant information.
To see the immediate implications of these restrictions, it
is helpful to construct the classes of payoff-equivalent
information sets. We put information sets in the same
payoff-equivalence class if experts at those decision
nodes are payoff equivalent for any DM strategy.9

Figure 2 illustrates the casewith no policy concerns. Each
row represents an assumption on the DM’s information
set at the end of the game,IDM2. Each column represents
one of the four information sets depicted in Figure 1.

No Validation, γ¼ 0. First, in the no validation
(NV) case, IDM2 ¼ mð Þ. Since the DM only sees the
message when evaluating the expert, if the expert has
no policy concerns his private signal is payoff-irrelevant.
Therefore, there is a single payoff-equivalence class
comprised of all four information sets, as depicted in
the first row of Figure 2, and the Markov strategies
restriction implies that all experts play the same strategy.
In this case, all that is left is a babbling equilibrium.

Proposition 2. With no validation and no policy
concerns (i.e., γ¼ 0), any MSE is babbling, and there
is no admission of uncertainty.

This highlights the importance of the Markov strategies
restriction. In our main example, if the environmental
expert does not care at all about whether a good policy
choice is made (unlikely if he is a citizen who is affected by
thepolicy)and there isnocheckonhis claimaboutwhether
the chemical is harmful (again, unlikely), the information
he has is not payoff relevant. We should not be surprised
that this extreme premise leads to an extreme prediction
that such an expert will not convey any useful information.

State Validation, γ¼ 0. A promising direction is to
allow the DM to observe ω when forming beliefs about
θ. Doing so breaks payoff equivalence between types
with different information about the state, aswe illustrate
in the second row of Figure 2. This partition of payoff
equivalence is rich enough to support honesty inMarkov
strategies. Bad experts and uninformed good experts can
pool on a message interpreted as “I don’t know,” and
informed experts can send messages interpreted as “the
optimal policy is zero” and “the optimal policy is one.”

To see this, consider the expected payoff for the
expert with type and signal θ, sð Þ sending message m:X

ω ∈ 0,1f g Pr ωjs,θð Þπg m,ωð Þ:

Now, the informed types with different information
about the state are not generally payoff equivalent since
Pr ωjθ,sð Þ depends on the signal. However, good and bad
uninformed experts— g, s∅ð Þ and b,s∅ð Þ—are always
payoff equivalent because Pr ωjg, s∅ð Þ¼Pr ωjb, s∅ð Þ.
So, the Markov strategies restriction does not preclude
admission of uncertainty (or even an honest equilibrium).
However, the Markov consistency restriction does.

To see why, consider the simplest case of an honest
equilibrium where types observing signal sx send mes-
sagemx. In such an equilibrium, the decisionmaker picks
a stringent regulation when the expert says the chemical
is harmful (a¼ 1 when observing m1), no regulation
when the chemical is not harmful (a¼ 0 when observing
m0), and intermediate regulation when the expert
admits not knowing whether the chemical is harmful
(a¼ p1 when observing m∅). The on-path information

FIGURE 2. Payoff-Equivalence Classes With
No Policy Concerns

NV

SV

DV

FV

b, ·, · g, h, · g, e, 0 g, e, 1

b, ·, · g, h, · g, e, 0 g, e, 1

b, ·, · g, h, · g, e, 0 g, e, 1

b, ·, · g, h, · g, e, 0 g, e, 1

Note: This figure depicts equivalence classes under each
validation regime for the case with no policy concerns. Each row
represents a validation regime: respectively, no validation, state
validation, difficulty validation, and full validation. Each column
represents an expert information set.

9 Any two information sets can be payoff equivalent for some DM
strategy: e.g., if she always picks the same policy and competence
assessment for all messages.
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sets include caseswhere a good expertmakes an accurate
recommendation, m0,0ð Þ and m1,1ð Þ, and caseswhere an
uninformed expert (good or bad) says “I don’t know”
along with either validation result: m∅,0ð Þ or m∅,1ð Þ.
When validation indicates the expert was right about
whether the chemical is harmful— m0,0ð Þ or m1,1ð Þ—
the DM knows the expert is good—πg mi, ið Þ¼ 1 for
i∈ 0,1f g. When observing m∅ and either validation
result, the belief about the expert competence is

πg m∅,ωð Þ ¼ Pr θ¼ g,δ¼hð Þ
Pr θ¼ g,δ¼ hð ÞþPr θ¼ bð Þ

¼ pg 1 − peð Þ
pg 1 − peð Þþ1 − pg

� π∅g :

The term π∅g , which recurs frequently throughout the
analysis, represents the share of uninformed types who
are competent but asked a hard question.
For the uninformed types, the expected payoff

for sending m∅ in the honest equilibrium is π∅g . Since
0 < π∅g < pg, the expert revealing himself as unin-
formed leads to a lower belief about competence than
the prior, but it is not zero because there are always
competent but uninformed types.
Consider a deviation to m1—claiming to know that

the chemical is harmful. When validation reveals this to
be true, the DM observes m1,1ð Þ and believes the
expert to be competent with probability 1. When val-
idation reveals the chemical is not harmful, the DM
observes m1,0ð Þ, which is off-path.
However, MSE places some restriction on this belief,

as it must be the limit of a sequence of beliefs consistent
with a sequence of Markov strategies. Since the good
and bad uninformed types are payoff equivalent and
play the same strategy, the worst inference that theDM
can make about the expert when observing an off-path
message/validation combination is that the expert was
uninformed; that is, πg m1,0ð Þ≥ π∅g (see the proof of
proposition 3). Given this restriction on the off-path
belief, in any honestMSE the payoff to sendingm1 must
be at least

p1þ 1 − p1ð Þπ∅g > π∅g :

The expert can look no worse from guessing that the
chemical is harmful and being incorrect than he would
when just admitting he is uncertain. Since there is a
chance to look competent when guessing and being
correct, the expert will always do so. Thismeans there is
always an incentive to deviate to m1 (or, by an analo-
gous argument, m0), and hence no honest equilibrium.
A related argument implies that there is no MSE

where the uninformed types sometimes admit uncer-
tainty—when σ∅ m∅ð Þ∈ 0,1ð Þ—and sometimes guess
m0 or m1: guessing and being correct always gives a
higher competence evaluation than incorrectly guess-
ing, which gives the same competence evaluation as
sending m∅. So, guessing gives a strictly higher payoff
than admitting uncertainty.

Proposition 3. With state validation and no policy
concerns, there is no MSE where an expert admits
uncertainty.

As shown in the proof of the proposition, there is an
MSE where the informed types reveal their informa-
tion. For example, the experts who know the chemical
is harmful report this and those who know it is not
harmful say so. However, all of the uninformed
experts—competent or not—will make a guess at
whether the chemical is harmful. The equilibrium
condition is that their guessing probabilities are such
that observing a claim that the chemical is harmful or
not leads to the same belief about the expert compe-
tence. So, state validation does improve communica-
tion in general relative to no validation but not in
terms of admitting uncertainty.

Further, as shown in section 1.2 of the Supplemental
Information, adding policy concerns (to the no valid-
ation or state validation case) will not solve this prob-
lem unless the expert cares so much about the policy as
to accept the hit to his reputation from admitting
uncertainty.

Difficulty, Full Validation, and Policy Concerns. For
theDM to effectively threaten punitive off-path beliefs,
we need to break the payoff equivalence of bad types
and good but uninformed types, and this is precisely
what difficulty validation (DV) does, depicted in the
third row of Figure 2. However, difficulty validation is
not enough to sustain honesty because (unlike state
validation) it does not break the payoff equivalence
between the informed experts who actually know
whether the chemical is harmful.

This we view as a more minor problem, which can be
solved by either combining state and difficulty valid-
ation (FV), as in the fourth row of Figure 2, or by
adding small policy concerns, which yields the payoff-
equivalence classes that are represented in Figure 3.
We formally prove results about when (complete)
communication of uncertainty is possible in the next
section.

Summary. From the payoff-equivalence classes
alone, we now know what cases at least allow for the
possibility of an honest equilibrium without strong
policy concerns. First, we need to break the payoff
equivalence between the types with different informa-
tion about whether the chemical is harmful, which can
be accomplished with either state validation or any
policy concerns. Second, we need to break the payoff
equivalence between good and bad uninformed
experts, which, given the natural way we have set up
the problem, can only be accomplished with difficulty
validation (or full validation, which includes difficulty
validation).

What remains is to check when honesty is in fact
possible. In the next section, we do this for the “hard-
est” case, with only difficulty validation and with small
policy concerns. As shown in section 1.2 of the Supple-
mental Information, the insights from this analysis are
similar to what we obtain with larger policy concerns
and/or full validation.

Matthew Backus and Andrew T. Little

732

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
9.

15
5.

34
.8

1,
 o

n 
29

 Ju
l 2

02
0 

at
 1

5:
53

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

03
05

54
20

00
02

09

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0003055420000209


ANALYSIS OF OUR MAIN CASE

While the previous section shows that difficulty val-
idation is necessary for the admission of uncertainty
(absent large policy concerns), we have not yet shown
when it is sufficient. This section explores when dif-
ficulty validation, combined with small policy con-
cerns, is sufficient for honesty, or at least some
admission of uncertainty.
We analyze difficulty validation rather than full val-

idation in the main text not because we believe the
former is necessarily more common but to show cir-
cumstances under which the minimal validation regime
is sufficient to induce admission of uncertainty.
The focus on small policy concerns is for both

technical and substantive reasons. If the expert has
exactly no policy concerns, then this renders the two
informed types (i.e., those who know the chemical is
harmful or not) payoff equivalent, which greatly
undermines the amount of information that can be
transmitted in an MSE. However, this is fragile to the
small and entirely realistic perturbation where the
expert has any nonzero concern about the quality of
the policy. For example, even if the chemical in ques-
tion only has a potentially small effect on the environ-
ment, the expert himself could be harmed by exposure.
So, having small policy concerns allows the informed
types to reveal their information honestly, while sim-
plifying the analysis of the potential deviations for
uninformed types since they (in the limit as γ! 0) will
send the message that maximizes their reputation for
competence.
This also hints at the more substantive justification.

In many, if not most policy-making domains, the effect
of the policy change that experts will feel in their own
personal life likely pales in comparison to their concern
about perceptions of their competence, which can
affect whether they keep their job or will be hired in
the future. In general, we expect that our analysis
applies more to “big” policy questions that affect many
people and where experts are very specialized and care
about perceptions of their competence in that particu-
lar domain.

Equilibrium

We continue to study the most straightforward class of
messaging strategies where the informed types send
one message each, to which we give the natural labels
m0 andm1, and the uninformed types either send one of
thesemessages or a thirdmessage labeledm∅ (“I Don’t
Know”).10

In an honest equilibrium, messages m0 and m1 are
only sent by informed types. So, when observing these
messages, the DM picks actions a¼ 0 and a¼ 1,
respectively. At the evaluation stage, when observing
m0,eð Þ or m1,eð Þ, the DM knows the expert is compe-
tent with certainty.

Upon observing m∅, the DM picks policy p1. The
competence assessment when the expert says “I don’t
know” depends on the result of the validation. When
the problem is easy, the DM knows that the expert is
incompetent because this fact means that a competent
expert would have learned whether the chemical
is harmful and sent an informative message. So,
πg m∅,eð Þ¼ 0. Upon observing m∅,hð Þ, the DM learns
nothing about the expert competence because no
expert gets an informative signal when the scientific
literature is uninformative.

Combining these observations, the payoff to the
good but uninformed type for sendingm∅ (who knows
the validation will reveal δ¼ h) is

pgþ γ 1 − p1 1 − p1ð Þ½ �:

The bad uninformed type does not know if the valid-
ation will reveal the problem is hard and so receives a
lower expected competence evaluation and hence pay-
off for sending m∅:

1 − peð Þpgþ γ 1 − p1 1 − p1ð Þ½ �:

Since no types are payoff equivalent, the Markov con-
sistency requirement places no restrictions on off-path
competence evaluations, and we can set these to zero.11

In the case with only difficulty validation, these are the
information sets m0, hð Þ and m1, hð Þ—getting caught
guessing when validation reveals that the scientific
literature is not informative. Importantly, the expert
is not caught because theDM realizes his claim is wrong
but because she comes to learn that the question was
not answerable. As formalized below, such an off-path
belief is also “reasonable” in the sense that the bad
uninformed types face a strictly stronger incentive to
guess than the good uninformed types do.

If the DM believes that the expert is bad with prob-
ability one upon observing m0, hð Þ or m1, hð Þ, then a
good but uninformed type knows he will get a reputa-
tion payoff of zero if sending either of these messages.
Further, if claiming he knows whether the chemical is

FIGURE 3. Payoff-Equivalence Classes With
Policy Concerns

NV

SV

DV

FV

b, ·, · g, h, · g, e, 0 g, e, 1

b, ·, · g, h, · g, e, 0 g, e, 1

b, ·, · g, h, · g, e, 0 g, e, 1

b, ·, · g, h, · g, e, 0 g, e, 1

Note: This figure depicts equivalence classes under each
validation regime for the case with policy concerns. Each row
represents a validation regime: no validation, state validation,
difficulty validation, and full validation, respectively. Each column
represents an expert information set, as derived in Figure 1.

10 See Section 2 of the Supplemental Information for an extensive
discussion of the sense in which this is without loss of generality.
11 This belief can be reached by assuming a sequence of strategies
where only the bad type sends a particular message, but with a
probability which approaches zero.
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harmful, the policy is worse as well, so he has no
incentive to deviate. A bad type guessing that the
chemical is harmful (m1) gets the expected payoff:

peþ γp1,

which is strictly higher than the payoff for sending m0.
So, the constraint for an honest equilibrium is

1 − peð Þpgþ γ 1 − p1 1 − p1ð Þ½ � ≥ peþ γp1

γ≥
pe 1þpg
� �

− pg

1 − p1ð Þ2 :

Not surprisingly, when policy concerns are very strong,
uninformed experts will admit uncertainty because it
leads to better policy choices. In fact, this holds for any
validation regime; see Section 1 of the Supplemental
Information for a comparison of “how strong” policy
concerns must be to induce honesty for each case. How-
ever, this analysis also highlights that when policy con-
cerns are small relative to reputation concerns, there is
never an honest equilibrium with no validation or just
state validation. In contrast, with just difficulty
validation,12 as γ! 0 there is an honest equilibriumwhen

pe ≤
pg

1þpg
: (5)

This inequality implies that an honest equilibrium is easy
to sustain when pe is low and pg is high. The former holds
for two reasons: a prior belief that the literature is likely
not informative about the chemical means that unin-
formed experts are likely to be competent, and the unin-
formed expert is more likely to be “caught” claiming to
haveananswer to an impossible problem.Asituationwith
more competent experts (high pg) makes honesty easier
because it means the uninformed types are frequently
competent, making admitting uncertainty look less bad.
What if Equation 5 does not hold? Of course, there is

always a babbling equilibrium, and there is also an
always guessing equilibrium where the good and bad
uninformed types always sendm0 orm1. More interest-
ing for our purposes, there can also be anMSEwhere all
of the good types report honestly and the bad types play
a mixed strategy over m0, m1, m∅ð Þ.13 There is a more
subtle incentive compatibility constraint that must be
met for this equilibrium to hold: if the bad types are
indifferent between sending m0 and m1, it can be the
case that the informed types prefer to deviate to sending
the other informed messages (i.e., the s1 type prefers to

send m0) when policy concerns get very small. See the
proof of proposition S.5 in section 1 of the Supplemental
Information for details. In short, if the probability of a
solvable problem is not too low or the probability of the
state being 1 is not too high, then this constraint is not
violated and there is anMSEwhere all of the good types
send their honest message.14

Proposition 4. As γ! 0 with difficulty validation,
there is an honest MSE if and only if pe ≤

pg
1 þ pg

. If not,

and pe ≥ 2p1 − 1, then there is an MSE where the good
types send their honest message and the bad types use the
following strategy:

σ∗b m∅ð Þ¼

1 − pe 1þpg
� �

1 − pg
pe ∈

pg
1þpg

,
1

1þpg

 !

0 pe ≥
1

1þpg
,

8>>>>><>>>>>:
,

σ∗b m0ð Þ¼ 1 − p1ð Þ 1 − σ∗b m∅ð Þ� �
,

σ∗b m1ð Þ¼ p1 1 − σ∗b m∅ð Þ� �
:

(6)
In sum, other than in a restrictive corner of the param-
eter space,15 small policy concerns and difficulty valid-
ation are sufficient to induce at least good and
uninformed experts to admit uncertainty—and poten-
tially full honesty among all experts.

When Do We Observe Admission of
Uncertainty, and from Whom?

Figure 4 illustrates the equilibrium described by prop-
osition 4, which helps provide some more concrete
insights into when we should expect to see admission
of uncertainty and good decisions. All claims that
follow are comparisons within this equilibrium, though
again this is the only MSE where the good types report
honestly (see footnote 13).

In the bottom right corner (most experts are compe-
tent, most problems are hard), there is an honest
equilibrium. Substantively, this corner of the parameter
space plausibly corresponds to environments where the
best experts are tackling questions on the research
frontier, be it at conferences or in the pages of academic
journals. In general, the admission of uncertainty is
quite frequent in these settings: even good experts
often don’t know the answer but feel comfortable
admitting this, and as a result bad experts can pool with
them and admit uncertainty too. So, while decision
makers may not always get useful advice here—recall,
most questions have no good answer—they will at least

12 Unsurprisingly, this constraint is even easier to meet with full
validation; the key point is that difficulty validation is necessary for
honesty with small policy concerns, and it is sometimes sufficient.
13 This is the onlyMSEwhere the good types report honestly, and we
conjecture that the equilibrium we check for (when it exists) maxi-
mizes both the probability that the expert admits uncertainty and the
expected value of the decision. It is hypothetically possible, though
we believe unlikely, that there could be anMSEwhere the good types
do not report honestly and this induces the bad types to admit
uncertainty more often in a manner that outweighs the loss of
information from the good types.

14 The proof of the proposition discusses how the intuition behind this
constraint.
15 The only time this does not hold is if

pg
1þpg

< pe and pe < 2p1 − 1.
So, three sufficient conditions for this constraint to remain unviolated
are (1) pg is high, (2) p1 is high, and (3) pe is either low or high. Even if
both of these inequalities hold, as shown in the proof of proposition
S.5 in section 1 of the Supplemental Information, it is a necessary but
not sufficient condition for an incentive compatibility constraint to be
violated.
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have no problems getting experts to honestly report
what they know.
In the top right corner, most experts are competent

andmost problems are easy.We can think of this part of
the parameter space as “business as usual” in bureau-
cracies, companies, or other organizations where quali-
fied experts are addressing relatively mundane
problems that they generally know how to solve. In
this case, there is little admission of uncertainty, both
because experts typically get informative signals and
because admitting uncertainty in this setting is too risky
for bad experts to ever do it. While experts have the
most information in this region, this comes at a cost
from the perspective of the decision maker, as bad
types always guess, which dilutes the value of the
informative messages.
Comparing across these two cases also hints at the

question of when good or bad experts aremore likely to
admit uncertainty. Our model contains a straightfor-
ward assumption about which experts are likely to be
uncertain about the state of the world: good experts
sometimes and bad experts always. And, in an honest
equilibrium—when pe < pg∕ð1þpgÞ—this is what
they will report, so bad experts admit uncertainty more
often.
However, on the other extreme, when

pe> 1∕ð1þpgÞ, it is only the good experts who will ever
admit uncertainty. Put another way, if an outside obser-
ver (who the expert does not care to impress) were to
see an expert admit uncertainty in this part of the
parameter space (and in this equilibrium), she would
know for sure that anyonewho says “I don’t know” is in
fact competent.
More generally, good experts admit uncertainty

whenever the problem is hard, with probability 1 − pe.
For parameters where good experts sometimes admit
uncertainty (the triangle in the left of Figure 4), bad

experts send m∅ with probability
1 − pe 1 þ pgð Þ

1 − pg
, which is

less than 1 − pe if and only if pe> 1∕2. So, in domains of
difficult problems, bad experts are more likely to admit
uncertainty, and in domains with easier questions good
experts are more likely to admit uncertainty.

Comparative Statics

We now ask how changing the probability parameters
of the model affects the communication of uncertainty
by uninformed experts in the MSE identified by prop-
osition 4.

In general, one might expect that adding more com-
petent experts will lead to less admission of uncertainty
and better decisions, and that making problems easier
will also lead to less admission of uncertainty and better
decisions. Both of these always hold within an honest
equilibrium, but they can break down elsewhere. Here
we highlight cases where these intuitive results do not
hold, and we then summarize with a complete descrip-
tion of the comparative statics.

More Competent Experts. Adding more competent
experts always leads to better decisions (on average),
but there are two scenarios where adding more com-
petent experts (increasing pg) can lead to more admis-
sion of uncertainty.

First, in the region where the bad types always guess,
the good types are the only experts who send m∅, so
increasing pg leads to more admission of uncertainty.

More subtly, when the bad types sometimes send
m∅ and pe < 1∕2 (the bottom left triangle), adding
more competent experts leads the bad types to admit
uncertainty more often. And since this is the part of the
parameter spacewhere good types usually admit uncer-
tainty as well, adding more competent types leads to
more admission of uncertainty overall:

Proposition 5. In the equilibrium identified by prop-
osition 4, (i) the expected value of the decision is strictly
increasing in pg and (ii) the unconditional probability
that the expert admits uncertainty is strictly decreasing

in pg if pe≤pg∕ 1þpg
� �

(honest equilibrium) or if

pe ∈ 1=2,1= 1þpg
� �h i

, and it is strictly increasing in

pg otherwise.

More Easy Questions. When the probability of an
easy problem increases, this always decreases the admis-
sion of uncertainty because good types aremore likely to
be informed and bad types are more apt to guess. The
potentially counterintuitive result here is that more easy
problems can sometimes lead to worse decisions. This is
possible because when problems are more likely to be
easy, the bad types aremore tempted to guess. If the bad
types never actually guess (bottom right corner) or
always guess (top right corner), this does not matter.
However, when making problems easier actually makes
the bad types guess more, the messages m0 and
m1 become less informative. As shown in the following
proposition, this can sometimes lead to worse decisions:

FIGURE 4. Illustration of Expert Strategies in
the Equilibrium Identified by Proposition 4, as a
Function of pe and pg, with p1 ¼ 1∕2.
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Proposition 6. In the equilibrium identified by prop-
osition 4, (i) the unconditional probability that an
expert admits uncertainty is strictly decreasing in pe
and (ii) for any pg, there exists aepe ∈ pg∕ 1þpg

� �
,1∕ 1þpg
� �h i

such that v∗ is strictly

decreasing in pe for pe ∈ pg= 1þpg
� �

, epeh i
.

DISCUSSION

This paper studies the strategic communication of
uncertainty by experts with reputation concerns. Our
analysis is built on two theoretical innovations. First, in
our setup, the decision maker is uncertain not only
about the state of the world, but also about whether
the state is even knowable for qualified experts. This
feature is related to prior work on the classification of
uncertainty, specifically, “aleatory" and “epistemic"
uncertainty, language dating to Hacking (1975). Alea-
tory uncertainty characterizes what we cannot know
—“difficult" questions (e.g., the roll of dice)—where
epistemic uncertainty is what we do not know but could
if we were more informed.16 We show that these prop-
erties of uncertainty have real implications both for
understanding why communication about uncertainty
is hard and for learning how to overcome that chal-
lenge. The way we formalize the distinction between
easy and hard problems highlights the idea that part of
being a domain expert is not merely knowing the
answers to questions but knowing the limits of what
questions are answerable.
A second innovation concerns the notion of “cred-

ible beliefs,” which is closely tied to structural consist-
ency of beliefs (Kreps and Wilson 1982). Honest
communication in our model is disciplined by experts’
reputational concerns—off-path, they are punished by
the low opinion of the decisionmaker. But what can she
credibly threaten to believe? Our use of Markov
sequential equilibrium rules out non-credible beliefs
that stipulate updating on payoff-irrelevant informa-
tion.
A pragmatic way to frame our inquiry is that we ask

what would the decisionmaker want to learn, ex post to
induce the experts to communicate their information
honestly ex ante?We found that the intuitive answer—
checking experts’ reports against the true state of the
world—is insufficient. Even when decision makers
catch an expert red-handed in a lie, the severity of their
beliefs is curtailed by the fact that good experts facing
unanswerable questions are in the same conundrum as
bad experts. Therefore, we show that state validation
alone never induces honesty. In order to elicit honest
reports from experts, it is necessary that the decision
maker also learns whether the problem is difficult.
Indeed, in environments where the expert has even

very small policy concerns, difficulty validation alone
may be sufficient.

Is such difficulty validation common in the real
world? As discussed throughout, we believe sometimes
information about difficulty naturally comes ex post,
and it can sometimes be accomplished by methods like
peer review. We conclude with a practical suggestion:
that when consulting multiple experts, decision makers
may want to give heterogenous incentives and ask
different questions. Rewarding some for “getting things
right” gives good incentives to avoid letting personal
biases contaminate advice and potentially for collecting
information in order to be informed in the first place.
However, as emphasized here, these kinds of reward
schemesmay exacerbate the problem of getting experts
to admit uncertainty. On the other hand, paying a flat
fee to an expert who will likely not be consulted again
for their services may have drawbacks, but it will make
the expert much more comfortable admitting uncer-
tainty. Further, some experts can simply be asked “do
you think the evidence about this question is solid”
rather than emphasizing what the expert thinks the
truth is. Finding other ways to achieve difficulty valid-
ation could be a path to improving communication in
politics and organizations more generally.

SUPPLEMENTARY MATERIALS

To view supplementary material for this article, please
visit http://dx.doi.org/10.1017/S0003055420000209.
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APPENDIX A: MARKOV SEQUENTIAL EQUILIBRIUM

General Definition of MSE

Take a general sequential game of incomplete information, and let each node (history) be associated with
information set I and an action set AI . Beliefs μ map information sets into a probability distribution over their
constituent nodes. A strategy profile for the entire game σmaps each information set into a probability distribution
overAI . Write the probability (or density) of action a at information set I as σI að Þ. Let the function uI a, σð Þ denote
the von Neumann–Morgenstern expected utility from taking action a∈ AI at an information set I when all
subsequent play, by all splayers, is according to σ. In our setting, the payoff-relevant state depends on the
information set of the DM, IDM2, so to define it, we look to affine payoff equivalence following Harsanyi and
Selten (1988) and Fudenberg and Tirole (1991).

Definition 2. A strategy σ is aMarkov strategy if whenever, for any pair of information sets I and I 0 with associated
action sets AI and AI 0 , and for some constants α> 0 and β, there exists a bijection f :AI !AI 0 such that
uI a,σð Þ¼ αuI 0 f að Þ,σ½ �þβ, ∀a∈ AI, then σI að Þ¼ σI 0 f að Þ½ �.
The extension of equilibrium in Markov strategies to a setting with incomplete information requires some

additional language.Our notation and terminologyparallels the treatment of sequential equilibrium inTadelis (2013).
As consistency is to sequential equilibrium, so Markov consistency is to Markov sequential equilibrium.

Definition 3. Aprofile of strategies σ and a system of beliefs μ isMarkov consistent if there exists a sequence of non-
degenerate, Markov mixed strategies σk

� �∞
k¼1 and a sequence of beliefs μk

� �∞
k¼1 that are derived from Bayes’ Rule,

such that lim
k!∞

σk,μk
� 	! σ,μð Þ.
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With this in hand, a notion of Markov sequential equilibrium follows directly.

Definition 4. Aprofile of strategies σ, together with a set of beliefs μ, is aMarkov sequential equilibrium if (σ∗,μ∗ ) is
a Markov consistent perfect Bayesian equilibrium.

Behavioral Motivation. Markov strategies have axiomatic foundations (Harsanyi and Selten 1988), and can be
motivated by purification arguments as well as finite memory in forecasting (Bhaskar et al. 2013; Maskin and
Tirole 2001). In the complete information settings to which it is commonly applied, the Markovian restriction
prevents the players from conditioning their behavior on payoff-irrelevant aspects of the (common knowledge)
history.17 The natural extension of this idea to asymmetric information games is to prevent players from
conditioning their strategies on payoff-irrelevant private information.
Our restriction on beliefs is also related to the notion of structural consistency proposed by Kreps and

Wilson (1982).18 In that spirit, Markov consistency formalizes a notion of “credible” beliefs, analogous to the
notion of credible threats in subgame perfect equilibrium. Instead of using arbitrarily punitive off-path beliefs to
discipline on-path behavior, we require that off-path beliefs are credible in the sense that, ex post, on arriving at
such an off-path node, the relevant agent could construct a convergent sequence of Markov strategies to
rationalize them.
Robustness of MSE. Though the restriction to Markov strategies itself enforces a notion of robustness, there is a

trivial sense in which the restriction of Markov equilibrium—whether in a complete information setting or an
incomplete information setting—is non-robust. In particular, because it imposes symmetric strategies only when
incentives are exactly symmetric, small perturbations of a model may permit much larger sets of equilibria. In the
standard applications of the Markov restriction, this could be driven by future payoffs being slightly different
depending on the history of play. In our setting, good and bad uninformed experts could have marginally different
expected payoffs. Either way, we maintain that this is a red herring. The point of the refinement, like the symmetry
condition of Nash (1950), is to hold the theorist to a simple standard: that we be precise about exactly what kind of
asymmetry in the model construction explains asymmetries in the predicted behavior. From this perspective, another
interpretation of our work is that we are reflecting on exactly what informational structures introduce the asymmetry
we need to obtain honesty in equilibrium. 19

Note on a Dynamic Interpretation. We have formulated our game as a one-shot sequential game with
reputational concerns, so the payoff equivalence holds without the need for affine transformations. In the repeated
game implied by the reputational concerns, this will not generally be the case. Depending on the formulation of
payoffs, good experts will most likely have a higher continuation value than bad ones in all but a babbling
equilibrium. This is where the potential for affine transformations in our definition of Markov strategies is useful—
if the prior beliefs of the DM at the beginning of a period are sufficient for the history of the game, then setting
β equal to the difference in continuation values means that the Markov restriction still binds.

MSE and SE

Here we offer a brief discussion of the prior use of the Markov sequential equilibrium (MSE) solution concept as
well as an illustration of its implications as a refinement on off-path beliefs.
MSE is the natural extension of Markov perfect equilibrium to incomplete information games. However, its

usage is infrequent and sometimes informal. To our knowledge, there is no general treatment or general guidance to
the construction of the maximally coarse (Markov) partition of the action space, unlike the case of MPE (Maskin
and Tirole 2001). Bergemann and Hege (2005) and Bergemann and Hörner (2010) employ the solution concept,
defining it as a perfect Bayesian equilibrium in Markovian strategies. In other words, they impose the Markov
restriction only on the sequential rationality condition. This is different and weaker than our construction. Our
definition ofMSE imposes theMarkov assumption on both sequential rationality as well as consistency.While they
do not use the Markov restriction to refine off-path beliefs, this is of no consequence for their applications.
To see the relevance of MSE to off-path beliefs, consider the game illustrated in Figure A.1, which is constructed

to mirror an example from Kreps and Wilson (1982).20 First, Nature chooses Player 1’s type, a or b. Next, Player
1 chooses l or r. Finally, Player 2 chooses u or d. Player 2 is never informed of Player 1’s type. Whether Player
1 knows their own type is the key difference between the two games.

17 Applications of Markov equilibrium have been similarly focused on the infinitely repeated, complete information setting. See, e.g., Maskin
and Tirole (1988a, 1988b) andEricson and Pakes (1995).
18 Kreps andRamey (1987) demonstrated that consistencymay not imply structural consistency, as conjectured byKreps andWilson (1982).We
observe that as the Markov property is preserved by limits, Markov consistency does not introduce any further interpretive difficulty.
19 We thank an anonymous referee for pointing out that one could also develop a notion of ε − Markov equilibrium to make this point. This is
beyond the theoretical ambition of the current work, but an interesting direction for future work.
20 See, in particular, their Figure 5 (page 873).
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In the first game, the player does not know their type. Posit an equilibrium in which Player 1 always chooses l.
What must Player 2 believe at a node following r? If the theorist is studying perfect Bayesian equilibrium (PBE),
theymay specify any beliefs theywish. Alternatively, if they are studying sequential equilibrium (SE), Player 2must
believe that Player 1 is of type a with probability p.
In the second game depicted, SE imposes no restriction on Player 2’s off-path beliefs. However, MSE may. If

u1 a, l, �ð Þ¼ u1 b, l, �ð Þ and u1 a,r, �ð Þ¼ u1 b,r, �ð Þ (or, more generally, the expected utilities are equal up to an affine
transformation), then we say that Player 1’s type is payoff irrelevant.The restriction toMarkov strategies implies that
Player 1’s strategy does not depend upon their type.Markov consistency implies that, further, Player 2 cannot update
about payoff irrelevant information. Therefore Player 2 must believe that Player 1 is of type a with probability p.

Non-Markovian PBE

Here we briefly discuss PBEs that fail the Markov consistency requirement of MSE, and we argue why we believe
these equilibria are less sensible.
In particular, we demonstrate that the most informative equilibrium under no policy concerns can involve more

transmission of uncertainty and also information about the state. However, these equilibria are not robust to minor
perturbations, such as introducing a vanishingly small random cost of lying.

Example 1: Admission of Uncertainty with No Validation. Even without the Markov restriction, it is immediate
that there can be no fully honest equilibrium with no validation. In such an equilibrium, the competence assessment
for sending either m0 or m1 is 1, and the competence assessment for sending m∅ is strictly less than one. So the
uninformed types have a strict incentive to deviate tom0 orm1. However, unlike the case with theMarkov restriction
that leads to babbling, there is an always guessing equilibrium: If informed types always send mx ¼ sx and all
uninformed types send m1 with probability p1 and m0 otherwise, the competence assessment upon observing either
message is pg. So no type has an incentive to deviate.
Further, it is possible to get admission of uncertainty if the good and bad uninformed types play different

strategies. In the extreme, suppose the good types always send their honest message, including the uninformed
sending m∅. If the bad types were to always send m0 or m1, then the competence assessment upon sending
m∅ would be 1. In this case, saying “I don’t know”would lead to the highest possible competence evaluation, giving
an incentive for all to admit uncertainty even if they know the state.
It is straightforward to check that if the bad types mix over messages m0, m1, m∅ð Þ with probabilities

[ 1 − p1ð Þ,pep1,1 − pe], then the competence assessment upon observing all messages is pg, and so no expert has
an incentive to deviate.
A common element of these equilibria is that the competence assessment for any on-path message is equal to the

prior. In fact, a messaging strategy can be part of a PBE if and only if this property holds: the competence
assessmentsmust be the same to prevent deviation, and if they are the same, then by the law of iterated expectations
they must equal the prior. So, there is a range of informative equilibria, but they depend on types at payoff-
equivalent information sets taking different actions, a violation ofMarkov strategies that reflects their sensitivity to
small perturbations of the payoffs.

Example 2: Honesty with State Validation orDifficulty Validation.Now return to the state validation case and the
conditions for an honest equilibrium.Without theMarkov restriction on beliefs, it is possible to set the off-path belief
upon observing an incorrect guess to 0. With this off-path belief, the incentive compatibility constraint to prevent

FIGURE A.1. Consistency, Markov Consistency, and Off-Path Beliefs

u d

l

u d

r

a

u d

l

u d

r

bNature

Player 1

Player 2

u d

l

u d

r

a

u d

l

u d

r

b

Note: This figure depicts two games, which differ inwhether Player 1 knows their own type. Their type, a orb, is chosen byNaturewithPr(a)=
p and Pr(b) = 1−p. Player 1 chooses l or r, and Player 2 sees this and reacts with u or d. Payoffs are omitted, but they can be written ui(���).
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sendingm1 becomes π∅g ≥ p1. Since π
∅
g is a function of pg and pe (but not p1), this inequality holds for a range of the

parameter space. However, this requires beliefs that are not Markov consistent—the DM who reaches that off-path
node cannot construct aMarkov strategy to rationalize their beliefs. So we argue that the threat of these beliefs is not
credible. Similarly, without the Markov restriction it is possible to get honesty with just difficulty validation. The
binding constraint is that if any off-path message leads to a zero competence evaluation, the bad type gets a higher
payoff from sending m∅—as in the case with γ! 0 , 1 − peð Þpg—than from sending m1 (now pe). So, honesty is
possible if 1 − peð Þpg >pe—the same condition as when γ! 0.

The Fragility of These Examples. A standard defense of Markov strategies in repeated games is that they
represent the simplest possible rational strategies (Maskin and Tirole 2001). A similar principle applies here: rather
than allowing for types with the same (effective) information to use different mixed strategies sustained by
indifference, MSE focuses on the simpler case where those with the same incentives play the same strategy.
Further, as shown by Bhaskar, Mailath, and Morris (2013) for the case of finite social memory, taking limits of

vanishing, independent perturbations to the payoffs—in the spirit of Harsanyi and Selten (1988) “purification”—
results in Markov strategies as well. Intuitively, suppose the expert receives a small perturbation to his payoff for
sending each message that is independent of type and drawn from a continuous distribution, so he has a strict
preference for sending one message over the others with probability one. Payoff-indifferent types must use the
same mapping between the perturbations and messages, analogous to Markovian strategies. Further, if these
perturbations put all messages on path, then all beliefs are generated by Markovian strategies.21

Summary. It would be possible to construct additional informative equilibria if we allowed different types to play
different actions, evenwhen they are payoff equivalent.We view this as amodeling contrivance, and this is precisely
what the Markov consistency restriction, above and beyond standard consistency, restricts. This point was
previously made by Harsanyi and Selten (1988), who contend that the property of “invariance with respect to
isomorphisms,” on which our definition of Markov strategies is based, is “an indispensable requirement for any
rational theory of equilibriumpoint selection that is based on strategic considerations exclusively.”Or, in the appeal
of Maskin and Tirole (2001) to payoff perturbations, “minor causes should have minor effects.”

APPENDIX B: PROOFS OF RESULTS IN THE MAIN TEXT

More General Definitions. Some of our results in this section rely on more general definitions of messaging
strategies. Starting with “honesty”:

Definition 5. Let πs mð Þ be the DM posterior belief that the expert observed signal s upon sending message m. An
equilibrium is honest if πs mð Þ∈ 0,1f g ∀ s∈ S and all on-path m.

As in all cheap-talk games, the messages sent only convey meaning by which types send them in equilibrium.We
define admitting uncertainty as sending a message which is never sent by either informed type:

Definition 6. Let M0 be the set of messages sent by the s0 types and M1 be the set of message sent by the s1 types.
Then an expert admits uncertainty if he sends a message m∉M0∪M1:

Finally, an important class of equilibria will be one in which the informed types send distinct message from each
other, but the uninformed types sometimes if not always mimic these messages:

Definition 7. A guessing equilibrium is one where M0 ∩M1 ¼∅, and Pr m∈ M0 ∪M1jθ,s∅ð Þ> 0 for at least one
θ∈ g,bf g. In an always guessing equilibrium, Pr m∈ M0 ∪M1jθ,s∅ð Þ¼ 1 for both θ ∈ g,bf g.
That is, an always guessing equilibrium is one where the informed types report their signal honestly, but the

uninformed types never admit uncertainty.
Proof of Proposition 1: For convenience, we extend the definition of v so v a,π1ð Þ represents the expected quality

of policy a under the belief that the state is 1 with probability π1.
The DM’s expected payoff from the game can be written as the sum over the (expected) payoff as a function of

the expert signal: X
s ∈ s0,s1,s∅f g

Pr sð Þ
X
m

Pr mjsð Þv a∗ mð Þ,Pr ωjsð Þ½ �: (7)

In the honest equilibrium, when the expert observes s0 or s1, the DM takes an action equal to the state with
probability 1, giving payoff 1. When the expert observes s∅, the equilibrium action is p1 giving payoff
v p1,p1ð Þ¼ 1 − p1 1 − p1ð Þ. So, the average payoff is

21 A related refinement more specific to our setting is to allow for a small random “lying cost” for sending a message not corresponding to the
signal, which is independent of the type (Kartik 2009).
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pgpe1þ 1 − pgpe
� �

p1 1 − p1ð Þ¼ �v:

This payoff as expressed inEquation 7 is additively separable in the signals, and v is strictly concave in a for each s.
So, for each s∈ s0,s1,s∅f g, this component of the sum is maximized if and only if a∗ mð Þ is equal to the action taken
upon observing the honest message is with probability 1. That is, it must be the case that

a∗ mð Þ¼
1 m :Pr mjs1ð Þ> 0

p1 m :Pr mjs∅ð Þ> 0

0 m :Pr mjs0ð Þ> 0

8><>: : (8)

If the equilibrium is not honest, then theremust exist amessagem0 such thatPr sjm0ð Þ < 1 for all s.At least one of
the informed typesmust sendm0 with positive probability; if not,Pr s∅jm0ð Þ ¼ 1. Suppose the type observing s0 sends
m0 with positive probability (An identical argument works if it is s1). To prevent Pr s0jm0ð Þ ¼ 1 another type must
send this message as well, and so in response the DM chooses an action strictly greater than 0, contradicting the
condition inEquation 8 and hence the expected quality of the decision in any equilibrium that is not honest is strictly
less than �v. □

Proof of Proposition 2: For any messaging strategy, the DMmust form a belief about the expert competence for
any message (on- or off-path); since it only depends on this message (and not the validation as in other cases) write
these πg mð Þ. So, for any type θ, the expected utility for sending message m is just πg mð Þ. All types are payoff-
equivalent in any equilibrium, so in any MSE they must use the same strategy. Since all messages are sent by both
informed and uninformed types, there is no admission of uncertainty. □

Proof of Proposition 3: Amore complete description of the MSE with no policy concerns and state validation is

Proposition 7. With state validation and no policy concerns (i) in any MSE, there is no admission of uncertainty
and (ii) any non-babbling MSE is equivalent, subject to relabeling, to an MSE where both uninformed types send
m1 with probability

σ∗∅ m1ð Þ¼
p1 1þpgpe
� �

− pgpe

1 − pgpe
if p1 < 1∕ 1þpgpe

� �
1 otherwise,

8>><>>:
and m0 with probability σ∗∅ m0ð Þ¼ 1 − σ∗∅ m1ð Þ.
Proof. Part i is immediate in a babbling equilibrium: there is no admission of uncertainty since there are no

messages only sent by the uninformed types. Propositions S.7 and S.8 in section 2 of the Supplemental Information
show that with state validation and no policy concerns, all non-babblingMSE are equivalent, subject to a relabeling
of the messages, to one where the the s0 types send m0, the s1 types send m1, and there is only one other potential
message m∅. What remains to be shown is that in the MSE of this form, the uninformed types never send m∅ and
send m0 and m1 with the probabilities in the statement of the proposition.
Recall the Markov strategy restriction implies the good and bad uninformed types use the same strategy. As

shown in the main text, in a conjectured honest equilibrium, the payoff for an uninformed type to sendm∅ is π∅g . To
formally show a deviation tom1 is profitable, recall the payoff to sending this message when ω¼ 1 is 1. When ω¼ 0,
the competence assessment is off path. Markov consistency requires that this belief be formed as the limit to a
sequence of well-defined beliefs that are consistent with a corresponding sequence of Markov strategies. Take any
sequence of Markov strategies σk and resulting beliefs

πkg m1,0ð Þ¼Pr m1,0,θ¼ gð Þ
Pr m1,0ð Þ ¼ 1 − p1ð Þpgpeσk0 m1ð Þþ 1 − p1ð Þpg 1 − peð Þσk∅ m1ð Þ

1 − p1ð Þpgpeσk0 m1ð Þþ 1 − p1ð Þ 1 − pgpe
� �

σk∅ m1ð Þ
:

This belief is increasing in σk0 m1ð Þ and decreasing in σk∅ m1ð Þ, and it can range from π∅g —when σk0 m1ð Þ¼ 0 and
σk∅ m1ð Þ> 0—to 1—when σk0 m1ð Þ> 0 and σk∅ m1ð Þ¼ 0. So, πg m1,0ð Þ must be the limit of a sequence where each

element lies in π∅g ,1
h i

, and the off-path belief must lie on this interval as well. Hence, the payoff to deviating tom1 is

at least p1þ 1 − p1ð Þπ∅g > π∅g , completing the proof that there is no honest equilibrium.
Now suppose the uninformed types send m∅ with a probability strictly between 0 and 1. The competence

assessment for sending m∅ is π∅g . Writing the probability the uninformed types send m1 with σ∅ m1ð Þ, the
competence assessment for sending m1 and observing validation that w¼ 1 is
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Pr θ¼ gjm1;σ∅ m1ð Þð Þ ¼ pgpep1þpg 1 − peð Þσ∅ m1ð Þ
pgpep1þ pg 1 − peð Þþ 1 − pg

� �h i
σ∅ m1ð Þ

≥
pgpep1þpg 1 − peð Þ

pgpep1þ pg 1 − peð Þþ 1 − pg
� �h i

>
pg 1 − peð Þ

pg 1 − peð Þþ 1 − pg
� �h i¼ π∅g :

Since the competence assessment for sending m1 is strictly higher than for sending m∅, there can be no MSE
where the uninformed types admit uncertainty, completing part i.
For part ii, first consider the condition for an equilibriumwhere bothm0 andm1 are sent by the uninformed types.

The uninformed types must be indifferent between guessing m0 and m1. This requires

p1πg m1,ω¼ 1ð Þþ 1 − p1ð Þπ∅g ¼ 1 − p1ð Þπg m0,ω¼ 0ð Þþp1π
∅
g , (9)

where the posterior beliefs about competence when “guessing wrong” are π∅g and when “guessing right” are given
by Bayes’ rule:

πg m1,ω¼ 1ð Þ¼Pr θ¼ g,ω¼ 1,m1ð Þ
Pr m1,ω¼ 1ð Þ ¼ p1pg peþ 1 − peð Þσ∅ m1ð Þ½ �

p1 pgpeþ 1 − pgpe
� �

σ∅ m1ð Þ
h i

πg m0,ω¼ 0ð Þ¼Pr θ¼ g,ω¼ 0,m0ð Þ
Pr m0,ω¼ 0ð Þ ¼ 1 − p1ð Þpg peþ 1 − peð Þσ∅ m0ð Þ½ �

1 − p1ð Þ pgpeþ 1 − pgpe
� �

σ∅ m0ð Þ
h i :

Plugging these into Equation 9 and solving for the strategies with the additional constraint that
σ∅ m0ð Þþσ∅ m1ð Þ¼ 1 gives

σ∅ m0ð Þ¼
1 − p1 1þpgpe

� �
1 − pgpe

σ∅ m1ð Þ¼
p1 1þpgpe
� �

− pgpe

1 − pgpe
:

For this to be a valid mixed strategy, it must be the case that both of these expressions are between zero and one,

which is true if and only if p1 < 1∕ 1þpgpe
� �

∈ 1∕2,1ð Þ. So, if this inequality holds and the off-path beliefs upon

observingm∅ are sufficiently low, there is anMSEwhere both messages are sent by the uninformed types. And the
competence assessment for any off-path message/validation can be set to π∅g (i.e., the lowest belief possible with
Markov consistency), which is less than the expected competence payoff for sending either m0 or m1.
Now consider an equilibrium where uninformed types always send m1. The on-path message/validation

combinations are then m1,ω¼ 0ð Þ, m1,ω¼ 1ð Þ, and m0,ω¼ 0ð Þ, with the following beliefs about the expert
competence:

πg m1,ω¼ 0ð Þ¼ pg 1 − peð Þ
pg 1 − peð Þþ1 − pg

;

πg m1,ω¼ 1ð Þ¼ pgpeþpg 1 − peð Þ
pgpeþpg 1 − peð Þþ 1 − pg

� �¼pg, and

πg m0,ω¼ 0ð Þ¼ 1:

Preventing the uninformed types from sending m0 requires

p1pgþ 1 − p1ð Þ pg 1 − peð Þ
pg 1 − peð Þþ1 − pg

≥ p1πg m0,ω¼ 1ð Þþ 1 − p1ð Þ:

This inequality is easiest tomaintain when πg m0,ω¼ 1ð Þ is small, and by the argument in themain text, in anMSE

it must be at least π∅g . Setting πg m0,ω¼ 1ð Þ¼ π∅g and simplifying gives p1 ≥ 1∕ 1þpgpe
� �

, which is the reverse of the
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inequality required for an MSE where both m0 and m1 are sent. Again, setting the competence assessment for an
off-path message to π∅g prevents this deviation.
So, if p1≤1∕ 1þpgpe

� �
there is an MSE where both messages are sent, and if not there is an MSE where only

m1 is sent.
Finally, it is easy to verify there is never anMSEwhere onlym0 is sent, as the uninformed types have an incentive

to switch to m1. □

Proof of Proposition 4: See the Proof of Proposition S.5 in section 1 of the Supplemental Information.

Proof of Proposition 5: For part i, the result is immediate in the range of pe where pg does not change the bad type
strategy. For the range where the bad type strategy is a function of pg, plugging in the strategies identified into
Equation 6 and simplifying gives the expected quality of the decision as

1 − p1 1 − p1ð Þþ
pepg
� �2

p1 1 − p1ð Þ
pe − pg 1 − 2peð Þ : (10)

The derivative of Equation 10 with respect to pg is

p1 1 − p1ð Þp2epg 2pe 1þpg
� �

− pg
h i

pe − pg 1 − 2peð Þ
h i2 ,

which is strictly positive if pe>
pg

2 1þpgð Þ. Since the range of pe where the bad type plays a mixed strategy is

pe ∈ pg∕ 1þpg
� �

,1∕ 1þpg
� �h i

, this always holds.

For part ii, the unconditional probability of admitting uncertainty in this equilibrium is

pg 1 − peð Þþ 1 − pg
� �

σb m∅ð Þ: (11)

Within the range for an honest equilibrium—where σb m∅ð Þ¼ 1—the derivative of Equation 11 with respect to
pg is − pe < 0. In the range where the bad type always guesses—σb m∅ð Þ¼ 0—the derivative is 1 − peð Þ> 0.
Plugging in the equilibrium strategy when interior and differentiating with respect to pg gives 1 − 2pe, which is
positive if and only if pe < 1∕2. □

Proof of Proposition 6: For part i, σb m∅ð Þ is weakly decreasing in pe, so Equation 11 is strictly decreasing in pe.

For part ii, in the range pe ∈ pg∕ 1þpg
� �

,1∕ 1þpg
� �h i

, the expected quality of the decision is Equation 10.

Differentiating this with respect to pe gives

p1 1 − p1ð Þpep2g pe − 2pgþ2pepg
� �

pe − pgþ2pepg
� �2 ,

which evaluated at pe ¼pg= 1þpg
� �

simplifies to –p1 1 − p1ð Þ. By continuity, this derivative must be negative on

some nonempty interval pg= 1þpg
� �

,epeh i
. So, the value of the decision must be locally decreasing at

pe¼ pg= 1þpg
� �

, and by continuity, for an open interval pe ∈ pg= 1þpg
� �

,epδh i
. □

I Don’t Know

743

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 9
9.

15
5.

34
.8

1,
 o

n 
29

 Ju
l 2

02
0 

at
 1

5:
53

:0
0,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

03
05

54
20

00
02

09

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0003055420000209

	I Don’t Know*
	Introduction
	Related Work
	The Model
	The Information Environment
	Sequence of Play and Payoffs
	Validation

	Equilibrium Definition and Properties
	Markov Sequential Equilibrium (MSE)
	Properties of Equilibria

	When is Admission of Uncertainty Possible?
	Analysis of Our Main Case
	Equilibrium
	When Do We Observe Admission of Uncertainty, and from Whom?
	Comparative Statics

	DISCUSSION
	Supplementary Materials
	Appendix A: Markov Sequential Equilibrium
	General Definition of MSE
	MSE and SE
	Non-Markovian PBE



